Informatics 1
Functional Programming Lectures 11 and 12
Monday 5 and Tuesday 6 November 2012

Abstract Types

Don Sannella
University of Edinburgh
Class test and final exam

Class test marks
Class test and final exam

Class test marks

Final exam marks, December 2011
Extra tutorials

• *In addition* to the usual weekly tutorial

• For those who want extra help; no need to sign up

• Starting this Wednesday, 1:10-2:00pm and 2:10-3:00pm, AT4.12

• For this Wednesday: *Do the extra tutorial exercises on the course webpage before the tutorial, and bring your attempt to the tutorial*
Part I

Complexity
$t = n \text{ vs } t = n^2$
$t = 2n \text{ vs } t = 0.5n^2$
$O(n)$ vs $O(n^2)$
$O(n), O(n^2), O(n^3), O(n^4)$
$O(\log n), O(n), O(n \log n), O(n^2)$
Part II

Sets as lists

without abstraction
module ListUnabs
 (Set, nil, insert, set, element, equal, check) where

import Test.QuickCheck

type Set a = [a]

nil :: Set a
nil = []

insert :: a -> Set a -> Set a
insert x xs = x:xs

set :: [a] -> Set a
set xs = xs
ListUnabs.hs (2)

```

    element :: Eq a => a -> Set a -> Bool
    x `element` xs = x `elem` xs

    equal :: Eq a => Set a -> Set a -> Bool
    xs `equal` ys = xs `subset` ys && ys `subset` xs
        where
            xs `subset` ys = and [ x `elem` ys | x <- xs ]
```

```
prop_element :: [Int] -> Bool
prop_element ys =
  and [ x `element` s == odd x | x <- ys ]
  where
    s = set [ x | x <- ys, odd x ]

check =
  quickCheck prop_element

-- Prelude ListUnabs> check
-- +++ OK, passed 100 tests.
module ListUnabsTest where

import ListUnabs

test :: Int -> Bool
test n =
  s 'equal' t
  where
    s = set [1,2..n]
    t = set [n,n-1..1]

breakAbstraction :: Set a -> a
breakAbstraction = head

-- not a function!
-- head (set [1,2,3]) == 1 /= 3 == head (set [3,2,1])
Part III

Sets as *ordered* lists
without abstraction
module OrderedListUnabs
    (Set, nil, insert, set, element, equal, check) where

import Data.List (nub, sort)
import Test.QuickCheck

type Set a = [a]

invariant :: Ord a => Set a -> Bool
invariant xs =
    and [ x < y | (x, y) <- zip xs (tail xs) ]
OrderedListUnabs.hs (2)

nil :: Set a
nil = []

insert :: Ord a => a -> Set a -> Set a
insert x [] = [x]
insert x (y:ys) | x < y = x : y : ys
| x == y = y : ys
| x > y = y : insert x ys

set :: Ord a => [a] -> Set a
set xs = nub (sort xs)
OrderedListUnabs.hs (3)

element :: Ord a => a -> Set a -> Bool
x 'element' [] = False
x 'element' (y:ys) | x < y = False
| x == y = True
| x > y = x 'element' ys

equal :: Eq a => Set a -> Set a -> Bool
xs 'equal' ys = xs == ys
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
  where
    s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
  and [ x 'element' s == odd x | x <- ys ]
  where
    s = set [ x | x <- ys, odd x ]

check =
  quickCheck prop_invariant >>
  quickCheck prop_element

Prelude OrderedListUnabs> check
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.
module OrderedListUnabsTest where

import OrderedListUnabs

test :: Int -> Bool
test n =
  s 'equal' t
  where
    s = set [1,2..n]
    t = set [n,n-1..1]

breakAbstraction :: Set a -> a
breakAbstraction = head
  -- now it’s a function
  -- head (set [1,2,3]) == 1 == head (set [3,2,1])

badtest :: Int -> Bool
badtest n =
  s 'equal' t
  where
    s = [1,2..n]  -- no call to set!
    t = [n,n-1..1]  -- no call to set!
Part IV

Sets as ordered trees without abstraction
module TreeUnabs
  (Set (Nil, Node), nil, insert, set, element, equal, check) where
import Test.QuickCheck

data Set a = Nil | Node (Set a) a (Set a)

list :: Set a -> [a]
list Nil = []
list (Node l x r) = list l ++ [x] ++ list r

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r) =
  invariant l && invariant r &&
  and [ y < x | y <- list l ] &&
  and [ y > x | y <- list r ]
nil :: Set a
nil = Nil

insert :: Ord a => a -> Set a -> Set a
insert x Nil = Node Nil x Nil
insert x (Node l y r)
  | x == y    = Node l y r
  | x < y    = Node (insert x l) y r
  | x > y    = Node l y (insert x r)

set :: Ord a => [a] -> Set a
set = foldr insert nil
element :: Ord a => a -> Set a -> Bool
x `element` Nil = False
x `element` (Node l y r)
  | x == y = True
  | x < y  = x `element` l
  | x > y  = x `element` r

equal :: Ord a => Set a -> Set a -> Bool
s `equal` t = list s == list t
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
  where
    s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
  and [ x 'element' s == odd x | x <- ys ]
  where
    s = set [ x | x <- ys, odd x ]

check =
  quickCheck prop_invariant >>
  quickCheck prop_element

-- Prelude TreeUnabs> check
-- +++ OK, passed 100 tests.
-- +++ OK, passed 100 tests.
module TreeUnabsTest where

import TreeUnabs


test :: Int -> Bool

  test n =
    s `equal` t

  where
    s = set [1,2..n]
    t = set [n,n-1..1]

badtest :: Bool

  badtest =
    s `equal` t

  where
    s = set [1,2,3]
    t = Node (Node Nil 3 Nil) 2 (Node Nil 1 Nil)

  -- breaks the invariant!
Part V

Sets as *balanced* trees without abstraction
module BalancedTreeUnabs
    (Set (Nil, Node), nil, insert, set, element, equal, check) where

import Test.QuickCheck

type Depth = Int

data Set a = Nil | Node (Set a) a (Set a) Depth

node :: Set a -> a -> Set a -> Set a
node l x r = Node l x r (1 + (depth l `max` depth r))

depth :: Set a -> Int
depth Nil = 0
depth (Node _ _ _ d) = d
BalancedTreeUnabs.hs (2)

```haskell
list :: Set a -> [a]
list Nil = []
list (Node l x r _) = list l ++ [x] ++ list r

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r d) =
 invariant l && invariant r &&
 and [y < x | y <- list l] &&
 and [y > x | y <- list r] &&
 abs (depth l - depth r) <= 1 &&
 d == 1 + (depth l `max` depth r)
```
BalancedTreeUnabs.hs (3)

nil :: Set a
nil = Nil

insert :: Ord a => a -> Set a -> Set a
insert x Nil = node nil x nil
insert x (Node l y r _)  
  | x == y     = node l y r
  | x < y     = rebalance (node (insert x l) y r)
  | x > y     = rebalance (node l y (insert x r))

set :: Ord a => [a] -> Set a
set = foldr insert nil
Rebalancing

Node (Node a x b) y c  -->  Node a x (Node b y c)

Node (Node a x (Node b y c) z d)  -->  Node (Node a x b) y (Node c z d)
rebalance :: Set a -> Set a
rebalance (Node (Node a x b _) y c _) | depth a >= depth b && depth a > depth c
  = node a x (node b y c)
rebalance (Node a x (Node b y c _) _) | depth c >= depth b && depth c > depth a
  = node (node a x b) y c
rebalance (Node (Node a x (Node b y c _) _) z d _)
  | depth (node b y c) > depth d
  = node (node a x b) y (node c z d)
rebalance (Node a x (Node (Node b y c _) z d _) _)
  | depth (node b y c) > depth a
  = node (node a x b) y (node c z d)
rebalance a = a
BalancedTreeUnabs.hs (5)

element :: Ord a => a -> Set a -> Bool
  x `element` Nil = False
  x `element` (Node l y r _) |
    x == y = True
    x < y = x `element` l
    x > y = x `element` r

equal :: Ord a => Set a -> Set a -> Bool
  s `equal` t = list s == list t
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
    where
        s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
    and [ x `element` s == odd x | x <- ys ]
    where
        s = set [ x | x <- ys, odd x ]

check =
    quickCheck prop_invariant >>
    quickCheck prop_element

-- Prelude SetBalancedTreeUnabs> check
-- +++ OK, passed 100 tests.
-- +++ OK, passed 100 tests.
module BalancedTreeUnabsTest where

import BalancedTreeUnabs

test :: Int -> Bool

test n =
  s 'equal' t

  where
  s = set [1,2..n]
  t = set [n,n-1..1]

badtest :: Bool

badtest =
  s 'equal' t

  where
  s = set [1,2,3]
  t = (Node Nil 1 (Node Nil 2 (Node Nil 3 Nil 1) 2) 3)
  -- breaks the invariant!
Part VI

Complexity, revisited
## Summary

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>set</th>
<th>element</th>
<th>equal</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>OrderedList</td>
<td>$O(n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Tree</td>
<td>$O(\log n)^*$</td>
<td>$O(n \log n)^*$</td>
<td>$O(\log n)^*$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
<td>$O(n)^\dagger$</td>
<td>$O(n^2)^\dagger$</td>
<td>$O(n)^\dagger$</td>
<td></td>
</tr>
<tr>
<td>BalancedTree</td>
<td>$O(\log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

* average case  /  † worst case
Part VII

Data Abstraction
module ListAbs
   (Set,nil,insert,set,element,equal,check) where

import Test.QuickCheck

newtype Set a = MkSet [a]

nil :: Set a
nil = MkSet []

insert :: a -> Set a -> Set a
insert x (MkSet xs) = MkSet (x:xs)

set :: [a] -> Set a
set xs = MkSet xs
element :: Eq a => a -> Set a -> Bool
  x `element` (MkSet xs) = x `elem` xs

equal :: Eq a => Set a -> Set a -> Bool
  MkSet xs `equal` MkSet ys =
      xs `subset` ys && ys `subset` xs
  where
    xs `subset` ys = and [ x `elem` ys | x <- xs ]
prop_element :: [Int] -> Bool
prop_element ys =
    and [ x `element` s == odd x | x <- ys ]
    where
      s = set [ x | x <- ys, odd x ]

check =
    quickCheck prop_element

-- Prelude ListAbs> check
-- +++ OK, passed 100 tests.
module ListAbsTest where
import ListAbs

test :: Int -> Bool
test n =
  s 'equal' t
where
  s = set [1,2..n]
  t = set [n,n-1..1]

-- Following no longer type checks!
-- breakAbstraction :: Set a -> a
-- breakAbstraction = head
module ListAbs (Set, nil, insert, set, element, equal)

> ghci ListAbs.hs
Ok, modules loaded: SetList, MainList.
* ListAbs> let s0 = set [2,7,1,8,2,8]
* ListAbs> let MkSet xs = s0 in xs
Not in scope: data constructor ‘MkSet’

VS.

module ListUnhidden (Set (MkSet), nil, insert, element, equal)

> ghci ListUnhidden.hs
* ListUnhidden> let s0 = set [2,7,1,8,2,8]
* ListUnhidden> let MkSet xs = s0 in xs
[2,7,1,8,2,8]
* ListUnhidden> head xs
Hiding—the secret of abstraction

```haskell
module TreeAbs (Set, nil, insert, set, element, equal)

> ghci TreeAbs.hs
Ok, modules loaded: SetList, MainList.
*TreeAbs> let s0 = Node (Node Nil 3 Nil) 2 (Node Nil 1 Nil)
Not in scope: data constructor ‘Node’, ‘Nil’

VS.

module TreeUnabs (Set (Node, Nil), nil, insert, element, equal)

> ghci TreeUnabs.hs
*SetList> let s0 = Node (Node Nil 3 Nil) 2 (Node Nil 1 Nil)
*SetList> invariant s0
False
```
It’s mine!