Informatics 1
 Functional Programming Lecture 7
 Friday 12 October 2012

Map, filter, fold

Don Sannella

University of Edinburgh

Class test

2:10-3:00pm Monday 22 October 2012
George Square Lecture Theatre

Past exams available on website http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/

Tutorials-extra tutorial

??-??pm Wednesday 17 October
 Appleton Tower TBA

See course web page for Doodle poll to decide time.

Attempt the 2011 class test in advance.
Print out and bring your solutions.

Required text and reading

Haskell: The Craft of Functional Programming (Third Edition), Simon Thompson, Addison-Wesley, 2011.

Reading assignment

Monday 24 September 2012 Chapters 1-3 (pp. 1-66)
Monday 1 October $2012 \quad$ Chapters 4-7 (pp. 67-176)
Monday 8 October $2012 \quad$ Chapters 8-9 (pp. 177-212)
Monday 15 October 2012 Chapters 10-12 (pp. 213-286)
Monday 22 October 2012 Class test
Monday 29 October 2012 Chapters 13-14 (pp. 287-356)
Monday 5 November 2012 Chapters 15-16 (pp. 357-414)
Monday 12 November 2012 Chapters 17-21 (pp. 415-534)

Part I

List comprehensions, revisited

Evaluating a list comprehension: generator

$$
\begin{aligned}
& \text { [} \mathrm{x} * \mathrm{x} \mid \mathrm{x}<- \text { [1..3]] } \\
& {[1 * 1]++[2 * 2]++[3 * 3]} \\
& {\left[\begin{array}{lll}
{[} & 1 &]
\end{array}++\left[\begin{array}{lll}
{[} & 4 &]
\end{array}++\left[\begin{array}{ll}
{[} & 9
\end{array}\right]\right.\right.} \\
& = \\
& {[1,4,9]}
\end{aligned}
$$

Evaluating a list comprehension: generator and filter

$$
\begin{aligned}
& \text { [} x * x \mid x<-[1.3], \text { odd } x \text {] } \\
& {[1 \star 1 \mid \text { odd } 1]++[2 \star 2 \mid \text { odd } 2]++[3 \star 3 \mid \text { odd } 3]} \\
& = \\
& \text { [} 1 \text { | True] }++[4 \text { False }] \quad++[9 \text { | True] } \\
& = \\
& {\left[\begin{array}{lll}
1 &] & ++\left[\begin{array}{l}
{[}
\end{array}\right]+\left[\begin{array}{cc}
{[} & 9
\end{array}\right]
\end{array}\right.} \\
& {[1,9]}
\end{aligned}
$$

Evaluating a list comprehension: two generators

$$
\begin{aligned}
& \text { [(i,j) | i <- [1..3], j <- [i..3]] } \\
& \text { = } \\
& \text { [}(1, j) \text { | j <- [1..3]] ++ } \\
& {[(2, j) \mid j<-[2 . .3]]++} \\
& {[(3, j) \mid j<-[3 . .3] \text {] }} \\
& = \\
& \left.\begin{array}{r}
{[(1,1)]++\left[\begin{array}{llll}
{[(1,2)} &] & ++ & (1,3)
\end{array}\right]++} \\
{[(2,2)]++} \\
{[(2,3)}
\end{array}\right]++ \\
& = \\
& {[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]}
\end{aligned}
$$

Another example

$$
\begin{aligned}
& \text { [(i,j) | i <- [1..3], j <- [1..3], i <= j] } \\
& = \\
& \text { [(1,j) | j <- [1..3], } 1<=j]++ \\
& {[(2, j) \mid j<-[1 . .3], 2<=j]++} \\
& {[(3, j) \mid j<-[1 . .3], 3<=j]} \\
& = \\
& {[(1,1) \mid 1<=1]++[(1,2) \mid 1<=2]++[(1,3) \mid 1<=3]++} \\
& {[(2,1) \mid 2<=1]++[(2,2) \mid 2<=2]++[(2,3) \mid 2<=3]++} \\
& {[(3,1) \mid 3<=1]++[(3,2) \mid 3<=2]++[(3,3) \mid 3<=3]} \\
& = \\
& {[(1,1)]++[(1,2)]++[(1,3)]++} \\
& \text { [] }++[(2,2)]++[(2,3)]++ \\
& \text { [] ++ [] ++ }[(3,3)] \\
& \text { = } \\
& {[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]}
\end{aligned}
$$

Defining list comprehensions

$$
\begin{aligned}
& \qquad q::=x \leftarrow l, q|b, q| \star \\
& {[e \mid \star]} \\
& \quad=[e] \\
& {\left[e \mid x \leftarrow\left[l_{1}, \ldots, l_{n}\right], q\right]} \\
& \quad=\left(\text { let } x=l_{1} \text { in }[e \mid q]\right)++\cdots++\left(\text { let } x=l_{n} \text { in }[e \mid q]\right) \\
& {[e \mid b, q]} \\
& \quad=\operatorname{if} b \text { then }[e \mid q] \text { else }[]
\end{aligned}
$$

Another example, revisited

```
    [ (i,j) | i <- [1..3], j <- [1..3], i <= j, * ]
\(=\)
    [ \((1, j) \mid j<-[1 . .3], 1<=j, *]++\)
    [ \((2, j) \mid j<-[1 . .3], 2<=j, *]++\)
    [ \((3, j) \mid\) j <- [1..3], \(3<=j, *]\)
=
    \([(1,1) \mid 1<=1, *]++[(1,2) \mid 1<=2, *]++[(1,3) \mid 1<=3, *]++\)
    \([(2,1) \mid 2<=1, *]++[(2,2) \mid 2<=2, *]++[(2,3) \mid 2<=3, *]++\)
    \([(3,1) \mid 3<=1, *]++[(3,2) \mid 3<=2, *]++[(3,3) \mid 3<=3, *]\)
\(=\)
    \([(1,1) \mid *]++[(1,2) \mid *]++[(1,3) \mid *]++\)
    [] ++ [(2,2)|*] ++ [(2,3)|*] ++
    [] ++ [] ++ \([(3,3) \mid *]\)
\(=\)
    \([(1,1)]++[(1,2)]++[(1,3)]++\)
    [] \(++[(2,2)]++[(2,3)]++\)
    [] ++ [] ++ \([(3,3)]\)
\(=\)
    \([(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]\)
```

Part II
Map

Squares

```
*Main> squares [1,-2,3]
[1,4,9]
squares :: [Int] -> [Int]
squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs
```


Ords

```
*Main> ords "a2c3"
[97,50,99,51]
ords :: [Char] -> [Int]
ords xs = [ ord x | x <- xs ]
ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs
```


Map

$$
\begin{aligned}
& \operatorname{map}::(a->b)->[a]->[b] \\
& \operatorname{map} f x s=[f x|x|<-x s] \\
& \operatorname{map}::(a->b)->[a]->[b] \\
& \operatorname{map} f[] \\
& \operatorname{map} f(x: x s)=f]
\end{aligned}
$$

Squares, revisited

```
*Main> squares [1,-2,3]
[1,4,9]
squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs ]
squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs
squares :: [Int] -> [Int]
squares xs = map sqr xs
    where
    sqr x = x*x
```

Map-how it works

$$
\begin{aligned}
& \operatorname{map}::(a->b)->[a]->[b] \\
& \operatorname{map} f x s=[f x \mid x<-x s] \\
& = \\
& \operatorname{map} \operatorname{sqr}[1,2,3] \\
& =[\operatorname{sqr} x \mid x<-[1,2,3]] \\
& =[\operatorname{sqr} 1]++[\operatorname{sqr} 2]++[\operatorname{sqr} 3] \\
& {[1,4,9]}
\end{aligned}
$$

Map-how it works

$$
\begin{aligned}
& \text { map :: (a -> b) -> [a] -> [b] } \\
& \operatorname{map} \mathrm{f} \text { [] }=\text { [] } \\
& \operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs})=\mathrm{f} x: \operatorname{map} \mathrm{f} x \mathrm{~s} \\
& \text { map sqr }[1,2,3] \\
& = \\
& \text { map } \operatorname{sqr}(1:(2:(3:[])) \\
& = \\
& \text { sqr } 1 \text { : map sqr (2 : (3 : [])) } \\
& = \\
& \text { sqr } 1 \text { : (sqr } 2 \text { : map } \operatorname{sqr}(3 \text { : [])) } \\
& = \\
& \text { sqr } 1 \text { : (sqr } 2 \text { : (sqr } 3 \text { : map sqr [])) } \\
& = \\
& \text { sqr } 1 \text { : (sqr } 2 \text { : (sqr } 3 \text { : [])) } \\
& =1:(4:(9:[])) \\
& = \\
& {[1,4,9]}
\end{aligned}
$$

Ords, revisited

```
*Main> ords "a2c3"
[97,50,99,51]
Ords :: [Char] -> [Int]
ords xs = [ ord x | x <- xs ]
Ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs
ords :: [Char] -> [Int]
ords xs = map ord xs
```


Part III

Filter

Positives

*Main> positives [1,-2,3]
[1,3]

```
positives :: [Int] -> [Int]
positives xs = [ x | x <- xs, x > 0 ]
positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs
| otherwise = positives xs
```


Digits

```
*Main> digits "a2c3"
"23"
digits :: [Char] -> [Char]
digits xs = [ x | x <- xs, isDigit x ]
digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs
    | otherwise = digits xs
```


Filter

```
filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [ x | x <- xs, p x ]
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs
    | otherwise = filter p xs
```


Positives, revisited

*Main> positives [1,-2,3]

[1,3]

```
positives :: [Int] -> [Int]
positives xs = [ x | x <- xs, x > 0 ]
positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs
positives :: [Int] -> [Int]
positives xs = filter pos xs
    where
    pos x = x > 0
```


Digits, revisited

```
*Main> digits "a2c3"
"23"
digits :: [Char] -> [Char]
digits xs = [ x | x <- xs, isDigit x ]
digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs
    | otherwise = digits xs
digits :: [Char] -> [Char]
digits xs = filter isDigit xs
```


Part IV

Fold

Sum

*Main> sum [1, 2, 3, 4]

10

```
sum :: [Int] -> Int
sum [] =0
sum (x:xs) = x + sum xs
```


Product

*Main> product [1,2,3,4]
24

```
product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs
```


Concatenate

```
*Main> concat [[1,2,3],[4,5]]
[1,2,3,4,5]
```

*Main> concat ["con","cat","en","ate"]
"concatenate"

```
concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss
```

Foldr

$$
\begin{aligned}
\text { foldr : }:(a->a-> & a)->a->[a]->a \\
\text { foldr } f a[] & a \\
\text { foldr } f a(x: x S) & =f x \text { (foldr f } a x s)
\end{aligned}
$$

Foldr, with infix notation

$$
\begin{aligned}
& \text { foldr : : (a -> a }->\text { a) }->a \operatorname{a} \text { [a] }->a \\
& \text { foldr f a [] }=a \\
& \text { foldr f } a(x: x s)=x \text { 'f' (foldr f a } x \text {) }
\end{aligned}
$$

Sum, revisited

```
*Main> sum [1,2,3,4]
10
```

```
sum :: [Int] -> Int
```

sum :: [Int] -> Int
sum [] =0
sum [] =0
sum (x:xs) = x + sum xs
sum (x:xs) = x + sum xs
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

```

Recall that \((+)\) is the name of the addition function,
\[
\text { so } x+y \text { and }(+) x y \text { are equivalent. }
\]

\section*{Sum, Product, Concat}
```

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs
product :: [Int] -> Int
product xs = foldr (*) 1 xs
concat :: [[a]] -> [a]
concat xs = foldr (++) [] xs

```

\section*{Sum—how it works}
```

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs
sum [1,2]
=
sum (1 : (2 : []))
=
1 + sum (2 : [])
=
1+(2 + sum [])
=
1+(2+0)
=
3

```

Sum—how it works, revisited
```

foldr :: (a -> a -> a) -> a $->$ [a] -> a
foldr f a [] $=a$
foldr f $a(x: x s)=x$ 'f' (foldr f a x)
sum : : [Int] -> Int
sum $\mathrm{xs}=$ foldr (+) 0 xs
$\operatorname{sum}[1,2]$
$=$
foldr (+) $0 \quad[1,2]$
$=$
foldr (+) 0 (1 : (2 : []))
$=$
$1+($ foldr $(+) 0(2$: []) $)$
$=$
$1+(2+(f o l d r(+) 0[])$
$=$
$1+(2+0)$
$=$
3

```

\section*{Part V}

\section*{Map, Filter, and Fold} All together now!

\section*{Sum of Squares of Positives}
```

f : : [Int] -> Int
$\mathrm{f} x \mathrm{x}=$ sum (squares (positives xs))
f : : [Int] $->$ Int
$f x=\operatorname{sum}[x * x \mid x<-x s, x>0]$
f : : [Int] -> Int
f [] $=$ []
f (x:xs)
$\mid x>0=(x * x)+f x S$
| otherwise $=\mathrm{f} x \mathrm{~s}$
f : : [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))
where
sqr $x=x * x$
$\operatorname{pos} x=x>0$

```

Part VI

\section*{Currying}

How to add two numbers
```

add :: Int -> Int -> Int
add x y = x + y
add 3 4
=
3+4
=
7

```

\section*{How to add two numbers}
```

add :: Int -> (Int -> Int)
(add x) y = x + y
(add 3) 4
=
3+4
=
7

```

A function of two numbers is the same as
a function of the first number that returns a function of the second number.

\section*{Currying}
```

add :: Int -> (Int -> Int)
add x = g
where
g y = x + y
(add 3) 4
=
g 4
where
g y = 3 + y
=
3+4
=
7

```

A function of two numbers is the same as a function of the first number that returns a function of the second number.

\section*{Currying}
```

add :: Int -> Int -> Int
add x y = x + y

```
means the same as
```

add : : Int -> (Int -> Int)
add $\mathrm{x}=\mathrm{g}$
where
$g y=x+y$

```
and
add 34
means the same as
(add 3) 4

This idea is named for Haskell Curry (1900-1982). It also appears in the work of Moses Schönfinkel (1889-1942), and Gottlob Frege (1848-1925).

\section*{Putting currying to work}
```

foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xS) = f x (foldr f a xS)
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

```
is equivalent to
```

foldr :: (a -> a -> a) -> a -> ([a] -> a)
foldr f a [] = a
foldr f a (x:xS) = f x (foldr f a xS)
sum :: [Int] -> Int
sum = foldr (+) 0

```

\section*{Compare and contrast}
\[
\begin{aligned}
& \text { sum : : [Int] }->\text { Int } \\
& \text { sum } \mathrm{xs}=\text { foldr }(+) 0 \mathrm{xs} \\
& \text { sum }[1,2,3,4] \\
& =\text { foldr }(+) 0[1,2,3,4]
\end{aligned}
\]

\section*{Sum, Product, Concat}
```

sum :: [Int] -> Int
sum = foldr (+) 0
product :: [Int] -> Int
product = foldr (*) 1
concat :: [[a]] -> [a]
concat = foldr (++) []

```
```

