
Informatics 1
Functional Programming Lecture 7

Friday 12 October 2012

Map, filter, fold

Don Sannella
University of Edinburgh



Class test

2:10–3:00pm Monday 22 October 2012
George Square Lecture Theatre

Past exams available on website
http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/



Tutorials—extra tutorial

??–??pm Wednesday 17 October
Appleton Tower TBA

See course web page for Doodle poll to decide time.

Attempt the 2011 class test in advance.
Print out and bring your solutions.



Required text and reading

Haskell: The Craft of Functional Programming (Third Edition),
Simon Thompson, Addison-Wesley, 2011.

Reading assignment

Monday 24 September 2012 Chapters 1–3 (pp. 1–66)

Monday 1 October 2012 Chapters 4–7 (pp. 67–176)

Monday 8 October 2012 Chapters 8–9 (pp. 177–212)

Monday 15 October 2012 Chapters 10–12 (pp. 213–286)

Monday 22 October 2012 Class test

Monday 29 October 2012 Chapters 13–14 (pp. 287–356)

Monday 5 November 2012 Chapters 15–16 (pp. 357–414)

Monday 12 November 2012 Chapters 17–21 (pp. 415–534)



Part I

List comprehensions, revisited



Evaluating a list comprehension: generator
[ x*x | x <- [1..3] ]

=
[ 1*1 ] ++ [ 2*2 ] ++ [ 3*3 ]

=
[ 1 ] ++ [ 4 ] ++ [ 9 ]

=
[1, 4, 9]



Evaluating a list comprehension: generator and filter
[ x*x | x <- [1..3], odd x ]

=
[ 1*1 | odd 1 ] ++ [ 2*2 | odd 2 ] ++ [ 3*3 | odd 3 ]

=
[ 1 | True ] ++ [ 4 | False ] ++ [ 9 | True ]

=
[ 1 ] ++ [ ] ++ [ 9 ]

=
[1, 9]



Evaluating a list comprehension: two generators
[ (i,j) | i <- [1..3], j <- [i..3] ]

=
[ (1,j) | j <- [1..3] ] ++
[ (2,j) | j <- [2..3] ] ++
[ (3,j) | j <- [3..3] ]

=
[ (1,1) ] ++ [ (1,2) ] ++ [ (1,3) ] ++

[ (2,2) ] ++ [ (2,3) ] ++
[ (3,3) ]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]



Another example
[ (i,j) | i <- [1..3], j <- [1..3], i <= j ]

=
[ (1,j) | j <- [1..3], 1 <= j ] ++
[ (2,j) | j <- [1..3], 2 <= j ] ++
[ (3,j) | j <- [1..3], 3 <= j ]

=
[(1,1)|1<=1] ++ [(1,2)|1<=2] ++ [(1,3)|1<=3] ++
[(2,1)|2<=1] ++ [(2,2)|2<=2] ++ [(2,3)|2<=3] ++
[(3,1)|3<=1] ++ [(3,2)|3<=2] ++ [(3,3)|3<=3]

=
[(1,1)] ++ [(1,2)] ++ [(1,3)] ++
[] ++ [(2,2)] ++ [(2,3)] ++
[] ++ [] ++ [(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]



Defining list comprehensions

q ::= x← l, q | b, q | *

[ e | * ]

= [ e ]

[ e | x← [ l1, . . ., ln ], q ]

= (let x = l1 in [ e | q ]) ++ · · · ++ (let x = ln in [ e | q ])

[ e | b, q ]

= if b then [ e | q ] else []



Another example, revisited
[ (i,j) | i <- [1..3], j <- [1..3], i <= j, * ]

=
[ (1,j) | j <- [1..3], 1 <= j, * ] ++
[ (2,j) | j <- [1..3], 2 <= j, * ] ++
[ (3,j) | j <- [1..3], 3 <= j, * ]

=
[(1,1)|1<=1,*] ++ [(1,2)|1<=2,*] ++ [(1,3)|1<=3,*] ++
[(2,1)|2<=1,*] ++ [(2,2)|2<=2,*] ++ [(2,3)|2<=3,*] ++
[(3,1)|3<=1,*] ++ [(3,2)|3<=2,*] ++ [(3,3)|3<=3,*]

=
[(1,1)|*] ++ [(1,2)|*] ++ [(1,3)|*] ++
[] ++ [(2,2)|*] ++ [(2,3)|*] ++
[] ++ [] ++ [(3,3)|*]

=
[(1,1)] ++ [(1,2)] ++ [(1,3)] ++
[] ++ [(2,2)] ++ [(2,3)] ++
[] ++ [] ++ [(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]



Part II

Map



Squares
*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [ x*x | x <- xs ]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs



Ords
*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ ord x | x <- xs ]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs



Map
map :: (a -> b) -> [a] -> [b]
map f xs = [ f x | x <- xs ]

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs



Squares, revisited
*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [ x*x | x <- xs ]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

squares :: [Int] -> [Int]
squares xs = map sqr xs

where
sqr x = x*x



Map—how it works
map :: (a -> b) -> [a] -> [b]
map f xs = [ f x | x <- xs ]

map sqr [1,2,3]
=

[ sqr x | x <- [1,2,3] ]
=

[ sqr 1 ] ++ [ sqr 2 ] ++ [ sqr 3]
=

[1, 4, 9]



Map—how it works
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map sqr [1,2,3]
=

map sqr (1 : (2 : (3 : [])))
=

sqr 1 : map sqr (2 : (3 : []))
=

sqr 1 : (sqr 2 : map sqr (3 : []))
=

sqr 1 : (sqr 2 : (sqr 3 : map sqr []))
=

sqr 1 : (sqr 2 : (sqr 3 : []))
=

1 : (4 : (9 : []))
=

[1, 4, 9]



Ords, revisited
*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ ord x | x <- xs ]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

ords :: [Char] -> [Int]
ords xs = map ord xs



Part III

Filter



Positives
*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [ x | x <- xs, x > 0 ]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs



Digits
*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [ x | x <- xs, isDigit x ]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs



Filter
filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [ x | x <- xs, p x ]

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs



Positives, revisited
*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [ x | x <- xs, x > 0 ]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

positives :: [Int] -> [Int]
positives xs = filter pos xs

where
pos x = x > 0



Digits, revisited
*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [ x | x <- xs, isDigit x ]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

digits :: [Char] -> [Char]
digits xs = filter isDigit xs



Part IV

Fold



Sum
*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs



Product
*Main> product [1,2,3,4]
24

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs



Concatenate
*Main> concat [[1,2,3],[4,5]]
[1,2,3,4,5]

*Main> concat ["con","cat","en","ate"]
"concatenate"

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss



Foldr
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)



Foldr, with infix notation
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = x ‘f‘ (foldr f a xs)



Sum, revisited
*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

Recall that (+) is the name of the addition function,
so x + y and (+) x y are equivalent.



Sum, Product, Concat
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

product :: [Int] -> Int
product xs = foldr (*) 1 xs

concat :: [[a]] -> [a]
concat xs = foldr (++) [] xs



Sum—how it works
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2]
=

sum (1 : (2 : []))
=

1 + sum (2 : [])
=

1 + (2 + sum [])
=

1 + (2 + 0)
=

3



Sum—how it works, revisited
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = x ‘f‘ (foldr f a xs)

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

sum [1,2]
=

foldr (+) 0 [1,2]
=

foldr (+) 0 (1 : (2 : []))
=

1 + (foldr (+) 0 (2 : []))
=

1 + (2 + (foldr (+) 0 []))
=

1 + (2 + 0)
=

3



Part V

Map, Filter, and Fold
All together now!



Sum of Squares of Positives
f :: [Int] -> Int
f xs = sum (squares (positives xs))

f :: [Int] -> Int
f xs = sum [ x*x | x <- xs, x > 0 ]

f :: [Int] -> Int
f [] = []
f (x:xs)

| x > 0 = (x*x) + f xs
| otherwise = f xs

f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0



Part VI

Currying



How to add two numbers
add :: Int -> Int -> Int
add x y = x + y

add 3 4
=

3 + 4
=

7



How to add two numbers
add :: Int -> (Int -> Int)
(add x) y = x + y

(add 3) 4
=

3 + 4
=

7

A function of two numbers
is the same as

a function of the first number that returns
a function of the second number.



Currying
add :: Int -> (Int -> Int)
add x = g

where
g y = x + y

(add 3) 4
=

g 4
where
g y = 3 + y

=
3 + 4

=
7

A function of two numbers
is the same as

a function of the first number that returns
a function of the second number.



Currying
add :: Int -> Int -> Int
add x y = x + y

means the same as

add :: Int -> (Int -> Int)
add x = g

where
g y = x + y

and

add 3 4

means the same as

(add 3) 4

This idea is named for Haskell Curry (1900–1982).
It also appears in the work of Moses Schönfinkel (1889–1942),

and Gottlob Frege (1848–1925).



Putting currying to work
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

is equivalent to

foldr :: (a -> a -> a) -> a -> ([a] -> a)
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

sum :: [Int] -> Int
sum = foldr (+) 0



Compare and contrast
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

sum [1,2,3,4]
=

foldr (+) 0 [1,2,3,4]

sum :: [Int] -> Int
sum = foldr (+) 0

sum [1,2,3,4]
=

(foldr (+) 0) [1,2,3,4]



Sum, Product, Concat
sum :: [Int] -> Int
sum = foldr (+) 0

product :: [Int] -> Int
product = foldr (*) 1

concat :: [[a]] -> [a]
concat = foldr (++) []


