Informatics 1

Functional Programming Lectures 7 and 8
Monday 17 and Tuesday 18 October 2011

Map, filter, fold

Philip Wadler
University of Edinburgh

Class test

2:00-2:50pm Monday 24 October 2011
Appleton Tower, Lecture Theatre 4

Past exams available on website
http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/

Drop-in labs—Ilonger lab hours

Monday 3:30—4:30pm Computer Lab West

Tuesday 2—4pm Computer Lab West
Wednesday 2—4pm Computer Lab West
Thursday 2—4pm Computer Lab West
Friday 3:30-4:30pm Computer Lab North

Computer Lab West and North — Appleton Tower, fifth floor

If you are not getting through the tutorials,
show up in the labs early and often.

Tutorials—extra tutorial

4—-5pm Wednesday 19 October
Appleton Tower 4.12

Attempt the 2010 Class Exam in advance.
Print out and bring your solutions.

Required text and reading

Haskell: The Craft of Functional Programming (Third Edition),
Simon Thompson, Addison-Wesley, 2011.

Reading assignment

Monday 26 September 2011 Chapters 1-3 (pp. 1-66)
Monday 3 October 2011 Chapters 4-7 (pp. 67-176)
Monday 10 October 2011 Chapters 8-9 (pp. 177-212)
Monday 17 October 2011 Chapters 10-12 (pp. 213-286)
Monday 24 October 2011 Class test

Monday 31 October 2011 Chapters 13—14 (pp. 287-356)
Monday 7 November 2011 Chapters 15-16 (pp. 357-414)
Monday 14 November 2011 Chapters 17-21 (pp. 415-534)

Phil

Phil’s tie

Part 1

List comprehensions, revisited

Evaluating a list comprehension: generator
[x*x | x <= [1..3]]

[1«1] ++ [2%2] ++ [3%3]

Evaluating a list comprehension: generator and filter
[x*xx | x <= [1..3], odd x]

[11 | odd 1] ++ [2x2 | odd 2] ++ [3%3 | odd 3]
[1 | True] ++ [4 | False | ++ [9 | True |

[1] ++ [] t+ [9]

Evaluating a list comprehension: two generators
[(i,3) | i <= [1..3], J <= [i..3]]
[(1,3) | 3 <= [1..31 1 ++
[(2,3) | 3 <= [2..3] 1 ++
[(3,3 | 3 <= [3..3]]

[(1, 1)] ++ [(1,2)] ++ [(1,3) 1 ++

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Another example

[(1,3) | 1 <=
[(]—rj) | j <-
[(2,3) | 73 <=
[(313) | j <-

[(1,1) |1<=1] ++
[(2,1) |2<=1] ++
[(3,1) |3<=1] ++

[(1,1)] ++ [(1,
[] ++
[] ++ []

J <= [1..3], 1 <=
1 <= 3 1 ++

2 <= 73 1 ++

3 <=5]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Defining list comprehensions

q =z 1,q]|bq]|~

[e | *]

= le]

[elx— [l1, ..., ln],q]

= (letz=hLin[elql)++ ---++(letx=I,in[e] q])
[elb, q]

= ifbthen [e | q] else []

Another example, revisited
[(1,73) | 1 <= [1..3], 7 <= [1..3], 1 <= 73, =*
[(]—rj) | j <- [1-3]/ 1 <= jr

*
[(2,3) | 3 <= [1..3], 2 <=3, =] ++
[(3,3) | 3 <= [1..3], 3 <=3, %

[(1,1)11<=1,%] ++ [(1,2)|1<=2,*] ++ [(1,3)|1l<=
[(2,1) l2<=1,x] ++ [(2,2) |2<=2,*] ++ [(2,3) |2<=
[(3, 1) 13<=1,x] ++ [(3,2)|3<=2,*] ++ [(3,3)[3<=

[(1,1) =] ++ [(1,2) %] ++ [(1,3)|*] ++
[] t+ [(2,2) [] ++ [(2,3)] ++

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Part 11

Map

Squares

x*Main> squares [1,-2, 3]

[1,4,9]

squares :: [Int] —-> [Int]
squares xs = [x*xXx | x <= x5]
squares :: [Int] —-> [Int]
squares [] =[]

squares (xXx:xXs) = X*xX : sguares XS

Ords

*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] —-> [Int]

ords xXs = [ord x | x <= xXs]
ords :: [Char] —-> [Int]

ords [] =[]

ords (x:xXs) = ord x : ords XxXs

map
map

map
map
map

Hho Hh e

(a —> Db)
Xs = [

(x:xX83) =

—> [b]
<- X8]
—> [b]

Squares, revisited

x*Main> squares [1,-2, 3]

[1,4,9]
squares :: [Int] —-> [Int]
squares xs = [x*xXx | x <= x5]
squares :: [Int] —-> [Int]
squares [] =[]
squares (xXx:xXs) = X*xX : sguares XS
squares :: [Int] —-> [Int]
squares Xs = map SJdr XS
where

sSgr X = X*X

Map—how 1t works

map :: (a —> b) -> [a] —-> [Db]
map f xs = [£ x | x <= x5]

map sqr [1,2,3]
[sgr x | x <- [1,2,3]]

[sgr 1] ++ [sgr 2] ++ [sqgr 3]

Map—how 1t works

map :: (a —> b) -> [a] —-> [Db]
map £ [] =[]
map f (x:xs) = f x : map f xs

map sqgr [1,2,3]

map sqgr (1 : (2 : (3 : [1)))

sqr 1 : map sqgr (2 : (3 : [1))

sqgr 1 : (sqr 2 : map sqr (3 : []))

sgr 1 : (sqr 2 : (sgqr 3 : map sqgr []))

sgqr 1 : (sgr 2 : (sgr 3 : []))

Ords, revisited

*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] —-> [Int]

ords xs = [ord x | x <= xXs]
ords :: [Char] —-> [Int]

ords [] =[]

ords (x:xXs) = ord x : ords XxXs
ords :: [Char] —-> [Int]

ords xs = map ord xs

Part 111

Filter

Positives

x*Main> positives [1,-2, 3]

[1, 3]

positives :: [Int] —> [Int]

positives xs = [X | x <— x5, x > 0]

positives :: [Int] —> [Int]

positives [] =[]

positives (x:xs) | x > 0 = X : positives Xxs

| otherwise = ©positives xs

Digits

*Main> digits "a2c3"

"23"

digits :: [Char] —> [Char]

digits xs = [x | x <= xs, 1isDigit x]
digits :: [Char] —-> [Char]

digits [] =[]

digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

Filter

filter :: (a —-> Bool) —-> [a] —-> [a]

filter p xs = [X | x <= X8, p x]

filter :: (a —> Bool) —-—> [a] —-> [a]

filter p [] =[]

filter p (x:xs) | p X = x : filter p xs

| otherwise = filter p xs

Positives, revisited

x*Main> positives [1,-2, 3]

[1,3]
positives :: [Int] —> [Int]
positives xs = [x | x <= x5, x > 0]
positives :: [Int] —-> [Int]
positives [] =[]
positives (x:xs) | x > 0 = X : positives Xxs
| otherwise = ©positives xs
positives :: [Int] -> [Int]
positives xs = filter pos xs
where

pos x = x >0

Digits, revisited

*Main> digits "a2c3"

"23"

digits :: [Char] —> [Char]

digits xs = [x | x <= xs, 1isDigit x]

digits :: [Char] —-> [Char]

digits [] =[]

digits (x:xs) | isDigit x = x : 1sDigit xs
| otherwise = 1sDigit xs

digits :: [Char] —-> [Char]

digits xs = filter 1sDigit xs

Part IV

Fold

Sum

*Main> sum [1,2,3,4]
10

sum :: [Int] —-> Int
sum [] = 0
sum (xX:xs) = X 4+ sum XS

Product

x*Main> product [1,2, 3, 4]
24

product :: [Int] —-> Int
product [] = 1
product (x:xs) = x * product xs

Concatenate

*Main> concat [[1,2,3],[4,65]]
[112131415]

*Main> concat ["con", "cat", "en", "ate"]
"concatenate"

concat :: [[a]] —-—> [a]
concat [] = []
concat (xs:xss) = XS ++ concat xss

Foldr

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a
foldr £ a (x:xs8) = f x (foldr £ a xs)

Foldr, with infix notation

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a
foldr £ a (x:xs8) = x ‘f£f' (foldr £ a xs)

Sum, revisited

*Main> sum [1,2,3,4]

10

sum :: [Int] —-> Int

sum [] = 0

sum (xX:xs) = X 4+ sum XS
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

Recall that (+) 1s the name of the addition function,
so x + y and (+) x y areequivalent.

Sum, Product, Concat

sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs
product :: [Int] —-> Int
product xs = foldr (%) 1 xs
concat o [[a]]l —> [a]

concat xs = foldr (++) [] Xxs

Sum—how it works

sum :: [Int] —-> Int

sum [] = 0

sum (xX:xs) = X + sum XS
sum [1,2]

sum (1 : (2 : []))

1 + sum (2 : [1])

1 + (2 4+ sum [])

1 + (2 + 0)

Sum—how 1t works, revisited

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a

foldr £ a (x:xs8) = x ‘f£f' (foldr £ a xs)
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

sum [1,2]

foldr 0 [1,2]

foldr (+) 0 (1 : (2 : []))

1 + (foldr (+) 0 (2 : [1))

1 + (2 + (foldr (+) 0 []))

1 + (2 + 0)

Part V

Map, Filter, and Fold
All together now!

Sum of Squares of Positives

f :: [Int] —-> Int
f xs = sum (squares (positives xs))
f :: [Int] —-> Int
f xXs = sum [x*X | X <= x5, X > 0]
f :: [Int] —-> Int
£ [] =[]
f (x:x8)
| x > 0 = (x*x) + f xs
| otherwise = f xs
f :: [Int] —-> Int
f xs = foldr (+) O (map sqgr (filter pos xs))
where
sgqr x = X * X
pos x = x > 0

Part VI

Currying

Currying

f :: Int —> (Int —-> Int)
fx = g
where
gy = X tY
(f 3) 4
g 4
where

gy =3 +y

3+ 4

A function of two numbers
1s the same as
a function of the first number that returns
a function of the second number.

Currying

f :: Int —> Int —-> Int
fxy = x +vy

means the same as

f :: Int —> (Int —-> Int)
fx = g
where
gy = X tY
and
f 3 4

means the same as

(£ 3) 4

This idea is named for Haskell Curry (1900-1982).
It also appears in the work of Moses Schonfinkel (1889-1942),
and Gottlob Frege (1848—1925).

Putting currying to work

foldr :: (a —> a -—> a) —-> a —-—> [a] —-—> a
foldr £ a [] = a

foldr £ a (x:xs8) = f x (foldr £ a xs)
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

1s equivalent to

foldr :: (a —> a -> a) —-> a —> ([a] —-> a)
foldr £ a [] = a
foldr £ a (x:xs) = f x (foldr £ a xs)

sum :: [Int] —> Int
sum = foldr (+) O

Compare and contrast

sum :: [Int] —-> Int
sum xs = foldr (+) 0 xs

sum [1,2,3,4]

foldr (+) 0 [1,2,3,4]

sum <3
sum =

[Int]
foldr

—> Int
(+) O

sum [1,2,3,4]

foldr

(+)

0

[1,2,3,4]

Sum, Product, Concat

sum :: [Int] —-> Int

sum = foldr (+) O
product :: [Int] —> Int
product = foldr (x) 1
concat o [[a]]l —> [a]

concat = foldr (++) []

Part V11

Lambda expressions

A

A failed attempt to simplify

f :: [Int] —-> Int

f xs = foldr (+) O (map sqr (filter pos xs))
where
sgr X = X * X
pos x = x >0

The above cannot be simplified to the following:

f :: [Int] —-> Int
f xs = foldr (+) 0 (map (x » x) (filter (x > 0) xs))

A successful attempt to simplify

f :: [Int] —-> Int

f xs = foldr (+) O (map sqr (filter pos xs))
where
sgr X = X * X
pos x = x >0

The above can be simplified to the following:

f :: [Int] —-> Int
f xs = foldr (+) O
(map (\x —> x * X)
(filter (\x -> x > 0) xs))

[LLambda calculus

f :: [Int] —-> Int
f xs = foldr (+) O
(map (\x —> x * X)
(filter (\x -> x > 0) xs))

The character \ stands for \, the Greek letter lambda.

Logicians write
\x —> x >0 as Azr.x >0

\X —> X * X aS A\r.x X x.

Lambda calculus is due to the logician Alonzo Church (1903-1995).

Evaluating lambda expressions
(\x => x > 0) 3

let x = 3 in x > 0
3 >0

True

(\x —> x * x) 3
let x = 3 1n x * X
3 x 3

9

Lambda expressions and currying
(\x —> \y —> x + vy) 3 4

((\x —> (\y —> x + vy)) 3) 4
(let x = 3 in \y —> x + y) 4
(\y —> 3 + vy) 4

let v = 4 in 3 + vy

3 + 4

7

Evaluating lambda expressions

The general rule for evaluating lambda expressions is

(Ax. N) M

(letx =M in N)

This is sometimes called the (3 rule (or beta rule).

Part VIII

Sections

Sections

(>

0)

1s shortand for (\x
1s shortand for (\x
1s shortand for (\x
1s shortand for (\x

1s shortand for (\x

Sections

f :: [Int] —-> Int
f xs = foldr (+) O
(map (\x —> x * X)
(filter (\x -> x > 0) xs))

f :: [Int] —-> Int
f xs = foldr (+) 0O (map (° 2) (filter (> 0) xs))

Part I1X

Composition

Composition

(.) 22 (b > ¢c) —> (a —> b) —> (a —> <)
(f . g9) x = £ (g x)

Evaluation composition

(.) 22 (b > c) —> (a —> b) —> (a —> <)

(£t .. g x = £ (g x)
sgr :: Int —-> Int
sqr X = X * X

pos :: Int —-> Bool
pos x = x >0

(pos . sqgr) 3
pos (sgr 3)
pos 9

True

Compare and contrast

possgr :: Int —-> Bool
possgr X = pos (sgr x)

possgr 3
pos (sgr 3)
pos 9

True

possgr :: Int —-> Bool
possgr = PpPOs . sgr
possgr 3

(pos . sqgr) 3

pos (sgr 3)

pos 9

True

Composition 1s associative

Thinking functionally

f :: [Int] —-> Int
f xs = foldr (+) 0O (map (° 2) (filter (> 0) xs))
f :: [Int] —-> Int

f = foldr (+) O . map (° 2) . filter (> 0)

Applying the function

f :: [Int] —-> Int
f = foldr (+) O . map (° 2) . filter (> 0)

(foldr (+) 0 . map (° 2) . filter (> 0))
foldr (+) 0 (map (° 2) (filter (> 0) [1,
foldr (+) 0 (map (~ 2) [1, 31)

Part X

Variables and binding

Variables

X

Y
Z

2
x+1

X+y*y

*Main> z

11

Variables—binding

X = 2
y = x+1
Z = Xty*y

*Main> z

11
Binding occurrence
Bound occurrence

Scope of binding

Variables—binding

X = 2
y = x+1
Z = Xty*xy

*Main> 2z
11

Binding occurrence
Bound occurrence

Scope of binding

Variables—binding

X = 2
y = x+1
Z = XtTy*xy

*Main> z

11
Binding occurrence
Bound occurrence
Scope of binding

Variables—renaming

xavier = 2
yolanda = xavier+l
zeuss = xaviertyolandaxyolanda

*Main> zeuss
11

Part XI

Functions and binding

Functions—binding

f x =g x (xt1)
g X YV = Xty*y

*Main> f 2
11

Functions—binding

fx =g x (x+1)
g X y = Xty*y

*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding

Functions—binding

f x =g x (xt1)
g X YV = Xty*y

*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding

There are two unrelated uses of x!

Functions—binding

f x =g x (x+1)
g Xy = xtyxy

*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding

Functions—binding

f x = g x (x+1)
g X Yy = Xty*y

*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding

Functions—binding

f x =g x (xt1)
g X Yy = Xty*y

*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding

Functions—formal and actual parameters

fx =g x (x+1)
g X YV = Xty*y

*Main> f 2
11

Formal parameter

Actual parameter

Functions—formal and actual parameters

f x =g x (xt1)
g X Yy = Xty*y

*Main> f 2
11

Formal parameter

Actual parameter

Functions—formal and actual parameters

f x =g x (x+1)
g X Yy = Xty*y

*Main> f 2
11

Formal parameter

Actual parameter

Functions—renaming

fred xavier = george xavier (xavier+l)
george xerox yolanda = xeroxtyolandaxyolanda

*Main> fred 2
11

Different uses of x renamed to xavier and xerox.

Part XII

Variables 1in a where clause and binding

Variables 1in a where clause

f x =2z
where
y = x+1
Z = Xty*y

*Main> f 2
11

Variables in a where clause—binding

f x =z
where
y = x+1
Z = Xty*y

*Main> £ 2

11
Binding occurrence
Bound occurrence

Scope of binding

Variables in a where clause—binding

f x =z
where
y = x+1
Z = Xty*xy

*Main> £ 2

11
Binding occurrence
Bound occurrence

Scope of binding

Variables in a where clause—binding

f x =z
where
y = x+1
Z = XtTy*xy

*Main> £ 2

11
Binding occurrence
Bound occurrence

Scope of binding

Variables in a where clause—binding

f x =2z
where
y = x+1
Z = Xty*y

*Main> f 2

11
Binding occurrence
Bound occurrence

Scope of binding

Variables 1n a where clause—hole 1n scope

f x =21z
where
y = x+1
Z = Xty*y

y = 5
*Main> vy
5

Binding occurrence
Bound occurrence

Scope of binding

Part XII1I

Functions in a where clause and binding

Functions 1in a where clause

f x =g (x+1)
where
gy = Xty*y

*Main> £ 2
11

Functions 1in a where clause—binding

f x =g (xt1)
where
gy = Xty*y

*Main> £ 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variable x is still in scope within g!

Functions 1in a where clause—binding

f x =g (x+1)
where
gy = Xtyxy

*Main> f 2

11
Binding occurrence
Bound occurrence
Scope of binding

Functions 1in a where clause—binding

f x =g (xt+1)
where
gy = Xty*y

*Main> f 2

11
Binding occurrence
Bound occurrence
Scope of binding

Functions 1in a where clause—binding

f x =g (xt1)
where
gy = Xty*y

*Main> £ 2

11
Binding occurrence
Bound occurrence

Scope of binding

Functions in a where clause—hole 1n scope

f x =g (x+1)
where
gy = Xty*y

g Z = Z*xZ*Z

*Main> g 2

8
Binding occurrence
Bound occurrence

Scope of binding

Functions in a where clause—pathological case

f x = £ (x+1)
where
f vy = xty*y

*Main> £ 2
11

Binding occurrence
Bound occurrence

Scope of binding

Functions in a where clause—pathological case

f x = £ (x+1)
where
f v = x+ty*y

*Main> f 2
11

Binding occurrence
Bound occurrence

Scope of binding

Functions 1n a where clause—formals and actuals

f x =g (x+1)
where
gy = Xty*y

*Main> £ 2
11

Formal parameter

Actual parameter

Functions 1n a where clause—formals and actuals

f x =g (x+1)
where
gy = Xty*y

*Main> £ 2
11

Formal parameter

Actual parameter

Part X1V

LLambda expressions and binding

A wrong attempt to simplify

f :: [Int] —-> [Int]
f xs = map (x » x) (filter (x > 0) xs)

This makes no sense—no binding occurrence of variable!

Lambda expressions

f :: [Int] —-> [Int]
f xs =
map (\x —> x % x) (filter (\x —> x > 0) xs)

The character \ stands for A, the Greek letter lambda.
Logicians write
(\x —> x » x) as (\r.x X x)

(\x —> x > 0) as (Azx.z>0)

Lambda expressions—binding

f :: [Int] —-> [Int]

f xs = map (\x —> x+*x) (filter (\x -> x > 0) xs)
Binding occurrence
Bound occurrence

Scope of binding

Lambda expressions—binding

f :: [Int] —-> [Int]

f xs = map (\x —> x+*x) (filter (\x -> x > 0) xs)
Binding occurrence
Bound occurrence

Scope of binding

Part XV

Lambda expressions explain binding

Lambda expressions explain binding

A variable binding can be rewritten using a lambda expression and an application:

(N wherexz = M)
(Az. N) M

(letx =M in N)

A function binding can be written using an application on the left or a lambda
expression on the right:

(M where fx = N)

(M where f = Axz. N)

Lambda expressions and binding constructs

f 2

where

f x = xt+tyxy
where
y = x+1

f 2
where
f = \x —> (x+y*xy where y = x+1)

f 2
where
f = \x -> ((\y —> xt+ty*y) (x+1))

(\f —> £ 2) (\x —> ((\y —> xtyxy) (x+1)))

Evaluating lambda expressions
(\f —> £ 2) (\x => ((\y —> x+y*y) (x+1)))

(\x > ((\y —> xtyry) (x+1))) 2
(\y —> 2+y*y) (2+1)

(\y —> 2+y*y) 3

2+3%3

11

Part XVI

Additional materal:

Lambda expressions and binding, revisited

Lambda expressions—binding
(\E —> £ 2) (\x —> ((\y —> x+tyry) (x+1)))
Binding occurrence

Bound occurrence
Scope of binding

Lambda expressions—binding
(\f —> £ 2) (\x —> ((\y —> xtyry) (x+1)))
Binding occurrence

Bound occurrence
Scope of binding

Lambda expressions—binding
(\f —> £ 2) (\x —> ((\y —> x+y*xy) (x+1)))
Binding occurrence

Bound occurrence
Scope of binding

Lambda expressions—formals and actuals
(\f —> £ 2) (\x —> ((\y —> x+y*y) (x+1)))

Formal parameter

Actual parameter

Lambda expressions—formals and actuals
(\x —> ((\y —> xtysy) (x+1))) 2

Formal parameter

Actual parameter

Lambda expressions—formals and actuals
(\y —> 2+yxy) (2+1)

Formal parameter

Actual parameter

Part XVII

Additional materal:

Comprehensions and binding

Comprehensions
f :: [Int] —-> [Int]

f xs = [x*Xx | x <= xs, x > 0]

*Main> £ [1,-2, 3]
[1,9]

Comprehensions—binding

f :: [Int] —-> [Int]
f xs = [x*x | x <= x5, x > 0]

*Main> £ [1,-2, 3]
[1,9]
Binding occurrence
Bound occurrence

Scope of binding

Comprehensions—binding

f :: [Int] —-> [Int]
f xs = [x*x | X <—- xs, x > 0]

*Main> £ [1,-2, 3]
[1,9]
Binding occurrence
Bound occurrence

Scope of binding

Comprehensions—pathological case

f :: [Int] —-> [Int]
f x = [x*x | x <—= x, x > 0]

*Main> £ [1,-2, 3]
[1,9]
Binding occurrence
Bound occurrence
Scope of binding — Note hole in scope!

Squares of Positives—ypathological case

f :: [Int] —-> [Int]
f x = [xxx | X <— x, x > 0]

*Main> £ [1,-2, 3]
[1,9]
Binding occurrence
Bound occurrence

Scope of binding

List comprehension with two qualifiers
fn = [(i,3) | i <= [1..n], 3 <= [i..n]]

*Main> £ 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

List comprehension with two qualifiers—binding
£n = [(i,3) | i <= [1..n], 3 <= [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

List comprehension with two qualifiers—binding
fn = [(i,3) | i <= [1..n], 3 <= [i..n]]

*Main> £ 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

List comprehension with two qualifiers—binding
fn = [(1,7) | 1 <= [1..n], J <= [1..n]]

*Main> £ 3
[(1,1),1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

Part XVIII

Additional materal:

Higher-order functions and binding

Higher-order functions

f :: [Int] —-> [Int]

f xs = map sgr (filter pos xs)
where
sgr X = X*X
pos x = x >0

*Main> £ [1,-2, 3]
[1,9]

Higher order functions—binding

f xs = map sgr (filter pos xs)
where
sgqr X = X*X
pos x = x > (

*Main> £ [1,-2,3]
[1,9]
Binding occurrence
Bound occurrence

Scope of binding

Higher-order functions—binding

f xs = map sgr (filter pos xs)
where
sgqr X = X*X
pos x = x > (

*Main> £ [1,-2,3]
[1,9]
Binding occurrence
Bound occurrence

Scope of binding

Higher-order functions—binding

f xs = map sqgr (filter pos xs)
where
Sgqr X = X*X
pos x = x > (

*Main> £ [1,-2,3]
[1,9]
Binding occurrence
Bound occurrence

Scope of binding

Higher-order functions—binding

f xs = map sqgr (filter pos xs)
where
sSgr X = X*X
pos x = x > (

*Main> £ [1,-2, 3]
[1,9]
Binding occurrence
Bound occurrence

Scope of binding

Higher-order functions—binding

f xs = map sgr (filter pos xs)
where
sSgr X = X*X
pos x = x > (

*Main> £ [1,-2, 3]
[1,9]
Binding occurrence
Bound occurrence

Scope of binding

Higher-order functions—binding

f xs = map sqgr (filter pos xs)
where
sgqr X = X*X
pos x = x > 0

*Main> £ [1,-2,3]
[1,9]
Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding

f xs = map sqgr (filter pos xs)
where
sgqr X = X*X
pos x = x > (

*Main> £ [1,-2,3]

[1,9]
Binding occurrence—not shown (in standard prelude)
Bound occurrence

Scope of binding

Higher-order functions—binding

f xs = map sqgr (filter pos Xxs)
where
sgqr X = X*X
pos x = x > (

*Main> £ [1,-2,3]

[1,9]
Binding occurrence—not shown (in standard prelude)
Bound occurrence

Scope of binding

