
Informatics 1
Functional Programming Lectures 7 and 8
Monday 17 and Tuesday 18 October 2011

Map, filter, fold

Philip Wadler
University of Edinburgh

Class test

2:00–2:50pm Monday 24 October 2011
Appleton Tower, Lecture Theatre 4

Past exams available on website
http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/

Drop-in labs—longer lab hours

Monday 3:30–4:30pm Computer Lab West

Tuesday 2–4pm Computer Lab West

Wednesday 2–4pm Computer Lab West

Thursday 2–4pm Computer Lab West

Friday 3:30–4:30pm Computer Lab North

Computer Lab West and North – Appleton Tower, fifth floor

If you are not getting through the tutorials,
show up in the labs early and often.

Tutorials—extra tutorial

4–5pm Wednesday 19 October
Appleton Tower 4.12

Attempt the 2010 Class Exam in advance.
Print out and bring your solutions.

Required text and reading

Haskell: The Craft of Functional Programming (Third Edition),
Simon Thompson, Addison-Wesley, 2011.

Reading assignment

Monday 26 September 2011 Chapters 1–3 (pp. 1–66)

Monday 3 October 2011 Chapters 4–7 (pp. 67–176)

Monday 10 October 2011 Chapters 8–9 (pp. 177–212)

Monday 17 October 2011 Chapters 10–12 (pp. 213–286)

Monday 24 October 2011 Class test

Monday 31 October 2011 Chapters 13–14 (pp. 287–356)

Monday 7 November 2011 Chapters 15–16 (pp. 357–414)

Monday 14 November 2011 Chapters 17–21 (pp. 415–534)

Phil

Phil’s tie

Part I

List comprehensions, revisited

Evaluating a list comprehension: generator
[x*x | x <- [1..3]]

=
[1*1] ++ [2*2] ++ [3*3]

=
[1] ++ [4] ++ [9]

=
[1, 4, 9]

Evaluating a list comprehension: generator and filter
[x*x | x <- [1..3], odd x]

=
[1*1 | odd 1] ++ [2*2 | odd 2] ++ [3*3 | odd 3]

=
[1 | True] ++ [4 | False] ++ [9 | True]

=
[1] ++ [] ++ [9]

=
[1, 9]

Evaluating a list comprehension: two generators
[(i,j) | i <- [1..3], j <- [i..3]]

=
[(1,j) | j <- [1..3]] ++
[(2,j) | j <- [2..3]] ++
[(3,j) | j <- [3..3]]

=
[(1,1)] ++ [(1,2)] ++ [(1,3)] ++

[(2,2)] ++ [(2,3)] ++
[(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Another example
[(i,j) | i <- [1..3], j <- [1..3], i <= j]

=
[(1,j) | j <- [1..3], 1 <= j] ++
[(2,j) | j <- [1..3], 2 <= j] ++
[(3,j) | j <- [1..3], 3 <= j]

=
[(1,1)|1<=1] ++ [(1,2)|1<=2] ++ [(1,3)|1<=3] ++
[(2,1)|2<=1] ++ [(2,2)|2<=2] ++ [(2,3)|2<=3] ++
[(3,1)|3<=1] ++ [(3,2)|3<=2] ++ [(3,3)|3<=3]

=
[(1,1)] ++ [(1,2)] ++ [(1,3)] ++
[] ++ [(2,2)] ++ [(2,3)] ++
[] ++ [] ++ [(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Defining list comprehensions

q ::= x← l, q | b, q | *

[e | *]

= [e]

[e | x← [l1, . . ., ln], q]

= (let x = l1 in [e | q]) ++ · · · ++ (let x = ln in [e | q])

[e | b, q]

= if b then [e | q] else []

Another example, revisited
[(i,j) | i <- [1..3], j <- [1..3], i <= j, *]

=
[(1,j) | j <- [1..3], 1 <= j, *] ++
[(2,j) | j <- [1..3], 2 <= j, *] ++
[(3,j) | j <- [1..3], 3 <= j, *]

=
[(1,1)|1<=1,*] ++ [(1,2)|1<=2,*] ++ [(1,3)|1<=3,*] ++
[(2,1)|2<=1,*] ++ [(2,2)|2<=2,*] ++ [(2,3)|2<=3,*] ++
[(3,1)|3<=1,*] ++ [(3,2)|3<=2,*] ++ [(3,3)|3<=3,*]

=
[(1,1)|*] ++ [(1,2)|*] ++ [(1,3)|*] ++
[] ++ [(2,2)|*] ++ [(2,3)|*] ++
[] ++ [] ++ [(3,3)|*]

=
[(1,1)] ++ [(1,2)] ++ [(1,3)] ++
[] ++ [(2,2)] ++ [(2,3)] ++
[] ++ [] ++ [(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Part II

Map

Squares
*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

Ords
*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

Map
map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Squares, revisited
*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

squares :: [Int] -> [Int]
squares xs = map sqr xs

where
sqr x = x*x

Map—how it works
map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

map sqr [1,2,3]
=

[sqr x | x <- [1,2,3]]
=

[sqr 1] ++ [sqr 2] ++ [sqr 3]
=

[1, 4, 9]

Map—how it works
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map sqr [1,2,3]
=

map sqr (1 : (2 : (3 : [])))
=

sqr 1 : map sqr (2 : (3 : []))
=

sqr 1 : (sqr 2 : map sqr (3 : []))
=

sqr 1 : (sqr 2 : (sqr 3 : map sqr []))
=

sqr 1 : (sqr 2 : (sqr 3 : []))
=

1 : (4 : (9 : []))
=

[1, 4, 9]

Ords, revisited
*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

ords :: [Char] -> [Int]
ords xs = map ord xs

Part III

Filter

Positives
*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [x | x <- xs, x > 0]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

Digits
*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [x | x <- xs, isDigit x]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

Filter
filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Positives, revisited
*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [x | x <- xs, x > 0]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

positives :: [Int] -> [Int]
positives xs = filter pos xs

where
pos x = x > 0

Digits, revisited
*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [x | x <- xs, isDigit x]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : isDigit xs

| otherwise = isDigit xs

digits :: [Char] -> [Char]
digits xs = filter isDigit xs

Part IV

Fold

Sum
*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

Product
*Main> product [1,2,3,4]
24

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

Concatenate
*Main> concat [[1,2,3],[4,5]]
[1,2,3,4,5]

*Main> concat ["con","cat","en","ate"]
"concatenate"

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

Foldr
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

Foldr, with infix notation
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = x ‘f‘ (foldr f a xs)

Sum, revisited
*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

Recall that (+) is the name of the addition function,
so x + y and (+) x y are equivalent.

Sum, Product, Concat
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

product :: [Int] -> Int
product xs = foldr (*) 1 xs

concat :: [[a]] -> [a]
concat xs = foldr (++) [] xs

Sum—how it works
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2]
=

sum (1 : (2 : []))
=

1 + sum (2 : [])
=

1 + (2 + sum [])
=

1 + (2 + 0)
=

3

Sum—how it works, revisited
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = x ‘f‘ (foldr f a xs)

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

sum [1,2]
=

foldr 0 [1,2]
=

foldr (+) 0 (1 : (2 : []))
=

1 + (foldr (+) 0 (2 : []))
=

1 + (2 + (foldr (+) 0 []))
=

1 + (2 + 0)
=

3

Part V

Map, Filter, and Fold
All together now!

Sum of Squares of Positives
f :: [Int] -> Int
f xs = sum (squares (positives xs))

f :: [Int] -> Int
f xs = sum [x*x | x <- xs, x > 0]

f :: [Int] -> Int
f [] = []
f (x:xs)

| x > 0 = (x*x) + f xs
| otherwise = f xs

f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

Part VI

Currying

Currying
f :: Int -> (Int -> Int)
f x = g

where
g y = x + y

(f 3) 4
=

g 4
where
g y = 3 + y

=
3 + 4

=
7

A function of two numbers
is the same as

a function of the first number that returns
a function of the second number.

Currying
f :: Int -> Int -> Int
f x y = x + y

means the same as

f :: Int -> (Int -> Int)
f x = g

where
g y = x + y

and

f 3 4

means the same as

(f 3) 4

This idea is named for Haskell Curry (1900–1982).
It also appears in the work of Moses Schönfinkel (1889–1942),

and Gottlob Frege (1848–1925).

Putting currying to work
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

is equivalent to

foldr :: (a -> a -> a) -> a -> ([a] -> a)
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

sum :: [Int] -> Int
sum = foldr (+) 0

Compare and contrast
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

sum [1,2,3,4]
=

foldr (+) 0 [1,2,3,4]

sum :: [Int] -> Int
sum = foldr (+) 0

sum [1,2,3,4]
=

foldr (+) 0 [1,2,3,4]

Sum, Product, Concat
sum :: [Int] -> Int
sum = foldr (+) 0

product :: [Int] -> Int
product = foldr (*) 1

concat :: [[a]] -> [a]
concat = foldr (++) []

Part VII

Lambda expressions
λ

A failed attempt to simplify
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

The above cannot be simplified to the following:

f :: [Int] -> Int
f xs = foldr (+) 0 (map (x * x) (filter (x > 0) xs))

A successful attempt to simplify
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

The above can be simplified to the following:

f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

Lambda calculus
f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

The character \ stands for λ, the Greek letter lambda.

Logicians write

\x -> x > 0 as λx. x > 0

\x -> x * x as λx. x× x.

Lambda calculus is due to the logician Alonzo Church (1903–1995).

Evaluating lambda expressions
(\x -> x > 0) 3

=
let x = 3 in x > 0

=
3 > 0

=
True

(\x -> x * x) 3
=

let x = 3 in x * x
=

3 * 3
=

9

Lambda expressions and currying
(\x -> \y -> x + y) 3 4

=
((\x -> (\y -> x + y)) 3) 4

=
(let x = 3 in \y -> x + y) 4

=
(\y -> 3 + y) 4

=
let y = 4 in 3 + y

=
3 + 4

=
7

Evaluating lambda expressions
The general rule for evaluating lambda expressions is

(λx.N)M

=

(let x = M inN)

This is sometimes called the β rule (or beta rule).

Part VIII

Sections

Sections
(> 0) is shortand for (\x -> x > 0)

(2 *) is shortand for (\x -> 2 * x)

(+ 1) is shortand for (\x -> x + 1)

(2 ˆ) is shortand for (\x -> 2 ˆ x)

(ˆ 2) is shortand for (\x -> x ˆ 2)

Sections
f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

f :: [Int] -> Int
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))

Part IX

Composition

Composition
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

Evaluation composition
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

sqr :: Int -> Int
sqr x = x * x

pos :: Int -> Bool
pos x = x > 0

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True

Compare and contrast

possqr :: Int -> Bool
possqr x = pos (sqr x)

possqr 3
=

pos (sqr 3)
=

pos 9
=

True

possqr :: Int -> Bool
possqr = pos . sqr

possqr 3
=

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True

Composition is associative
(f . g) . h = f . (g . h)

((f . g) . h) x
=

(f . g) (h x)
=

f (g (h x))
=

f ((g . h) x)
=

(f . (g . h)) x

Thinking functionally
f :: [Int] -> Int
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))

f :: [Int] -> Int
f = foldr (+) 0 . map (ˆ 2) . filter (> 0)

Applying the function
f :: [Int] -> Int
f = foldr (+) 0 . map (ˆ 2) . filter (> 0)

f [1, -2, 3]
=

(foldr (+) 0 . map (ˆ 2) . filter (> 0)) [1, -2, 3]
=

foldr (+) 0 (map (ˆ 2) (filter (> 0) [1, -2, 3]))
=

foldr (+) 0 (map (ˆ 2) [1, 3])
=

foldr (+) 0 [1, 9]
=

10

Part X

Variables and binding

Variables
x = 2
y = x+1
z = x+y*y

*Main> z
11

Variables—binding
x = 2
y = x+1
z = x+y*y

*Main> z
11

Binding occurrence
Bound occurrence
Scope of binding

Variables—binding
x = 2
y = x+1
z = x+y*y

*Main> z
11

Binding occurrence
Bound occurrence
Scope of binding

Variables—binding
x = 2
y = x+1
z = x+y*y

*Main> z
11

Binding occurrence
Bound occurrence
Scope of binding

Variables—renaming
xavier = 2
yolanda = xavier+1
zeuss = xavier+yolanda*yolanda

*Main> zeuss
11

Part XI

Functions and binding

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

There are two unrelated uses of x!

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—formal and actual parameters
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions—formal and actual parameters
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions—formal and actual parameters
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions—renaming
fred xavier = george xavier (xavier+1)
george xerox yolanda = xerox+yolanda*yolanda

*Main> fred 2
11

Different uses of x renamed to xavier and xerox.

Part XII

Variables in a where clause and binding

Variables in a where clause
f x = z

where
y = x+1
z = x+y*y

*Main> f 2
11

Variables in a where clause—binding
f x = z

where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—binding
f x = z

where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—binding
f x = z

where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—binding
f x = z

where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—hole in scope
f x = z

where
y = x+1
z = x+y*y

y = 5

*Main> y
5

Binding occurrence
Bound occurrence
Scope of binding

Part XIII

Functions in a where clause and binding

Functions in a where clause
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Functions in a where clause—binding
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variable x is still in scope within g!

Functions in a where clause—binding
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—binding
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—binding
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—hole in scope
f x = g (x+1)

where
g y = x+y*y

g z = z*z*z

*Main> g 2
8

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—pathological case
f x = f (x+1)

where
f y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—pathological case
f x = f (x+1)

where
f y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—formals and actuals
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions in a where clause—formals and actuals
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Part XIV

Lambda expressions and binding

A wrong attempt to simplify
f :: [Int] -> [Int]
f xs = map (x * x) (filter (x > 0) xs)

This makes no sense—no binding occurrence of variable!

Lambda expressions
f :: [Int] -> [Int]
f xs =

map (\x -> x * x) (filter (\x -> x > 0) xs)

The character \ stands for λ, the Greek letter lambda.

Logicians write

(\x -> x * x) as (λx. x× x)
(\x -> x > 0) as (λx. x > 0)

Lambda expressions—binding
f :: [Int] -> [Int]
f xs = map (\x -> x*x) (filter (\x -> x > 0) xs)

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—binding
f :: [Int] -> [Int]
f xs = map (\x -> x*x) (filter (\x -> x > 0) xs)

Binding occurrence
Bound occurrence
Scope of binding

Part XV

Lambda expressions explain binding

Lambda expressions explain binding
A variable binding can be rewritten using a lambda expression and an application:

(N where x = M)

=

(λx.N)M

=

(let x = M inN)

A function binding can be written using an application on the left or a lambda
expression on the right:

(M where f x = N)

=

(M where f = λx.N)

Lambda expressions and binding constructs
f 2
where
f x = x+y*y

where
y = x+1

=
f 2
where
f = \x -> (x+y*y where y = x+1)

=
f 2
where
f = \x -> ((\y -> x+y*y) (x+1))

=
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Evaluating lambda expressions
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

=
(\x -> ((\y -> x+y*y) (x+1))) 2

=
(\y -> 2+y*y) (2+1)

=
(\y -> 2+y*y) 3

=
2+3*3

=
11

Part XVI

Additional material:
Lambda expressions and binding, revisited

Lambda expressions—binding
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—binding
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—binding
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—formals and actuals
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Formal parameter
Actual parameter

Lambda expressions—formals and actuals
(\x -> ((\y -> x+y*y) (x+1))) 2

Formal parameter
Actual parameter

Lambda expressions—formals and actuals
(\y -> 2+y*y) (2+1)

Formal parameter
Actual parameter

Part XVII

Additional material:
Comprehensions and binding

Comprehensions
f :: [Int] -> [Int]
f xs = [x*x | x <- xs, x > 0]

*Main> f [1,-2,3]
[1,9]

Comprehensions—binding
f :: [Int] -> [Int]
f xs = [x*x | x <- xs, x > 0]

*Main> f [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Comprehensions—binding
f :: [Int] -> [Int]
f xs = [x*x | x <- xs, x > 0]

*Main> f [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Comprehensions—pathological case
f :: [Int] -> [Int]
f x = [x*x | x <- x, x > 0]

*Main> f [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding – Note hole in scope!

Squares of Positives—pathological case
f :: [Int] -> [Int]
f x = [x*x | x <- x, x > 0]

*Main> f [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

List comprehension with two qualifiers
f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

List comprehension with two qualifiers—binding
f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

List comprehension with two qualifiers—binding
f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

List comprehension with two qualifiers—binding
f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

Part XVIII

Additional material:
Higher-order functions and binding

Higher-order functions
f :: [Int] -> [Int]
f xs = map sqr (filter pos xs)

where
sqr x = x*x
pos x = x > 0

*Main> f [1,-2,3]
[1,9]

Higher order functions—binding
f xs = map sqr (filter pos xs)

where
sqr x = x*x
pos x = x > 0

*Main> f [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
f xs = map sqr (filter pos xs)

where
sqr x = x*x
pos x = x > 0

*Main> f [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
f xs = map sqr (filter pos xs)

where
sqr x = x*x
pos x = x > 0

*Main> f [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
f xs = map sqr (filter pos xs)

where
sqr x = x*x
pos x = x > 0

*Main> f [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
f xs = map sqr (filter pos xs)

where
sqr x = x*x
pos x = x > 0

*Main> f [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
f xs = map sqr (filter pos xs)

where
sqr x = x*x
pos x = x > 0

*Main> f [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
f xs = map sqr (filter pos xs)

where
sqr x = x*x
pos x = x > 0

*Main> f [1,-2,3]
[1,9]

Binding occurrence—not shown (in standard prelude)
Bound occurrence
Scope of binding

Higher-order functions—binding
f xs = map sqr (filter pos xs)

where
sqr x = x*x
pos x = x > 0

*Main> f [1,-2,3]
[1,9]

Binding occurrence—not shown (in standard prelude)
Bound occurrence
Scope of binding

