
Informatics 1

Functional Programming Lectures 1 and 2

Monday 26–Tuesday 27 September 2011

Introduction, Functions

Philip Wadler

University of Edinburgh

Welcome to Informatics 1, Functional Programming!

Course head: Ewan Klein

Functional programming (Inf1-FP)
Instructor: Philip Wadler

Teaching assistant: Phil Scott

Computation and logic (Inf1-CL)
Instructor: Dave Robertson

Teaching assistant: Shahriar Bijani

Informatics Teaching Organization (ITO):
Kristin Belk, Tamise Totterdell

Where to find us

IF – Informatics Forum (across the street)
AT – Appleton Tower (this building)

Course head: Ewan Klein ewan@inf.ed.ac.uk IF 2.11

Functional programming (Inf1-FP)
Instructor: Philip Wadler wadler@inf.ed.ac.uk IF 5.31

Teaching assistant: Phil Scott phil.scott@ed.ac.uk IF 2.05

Informatics Teaching Organization (ITO):
Kristin Belk, Tamise Totterdell AT 4.02

Required text and reading

Haskell: The Craft of Functional Programming (Third Edition),
Simon Thompson, Addison-Wesley, 2011.

Reading assignment

Monday 26 September 2011 Chapters 1–3 (pp. 1–66)

Monday 3 October 2011 Chapters 4–7 (pp. 67–176)

Monday 10 October 2011 Chapters 8–9 (pp. 177–212)

Lab Week Exercise and Drop-In Labs

Monday 3–4pm Computer Lab West

Tuesday 2–3pm Computer Lab West

Wednesday 2–3pm Computer Lab West

Thursday 2–3pm Computer Lab West

Friday 3–4pm Computer Lab North

Computer Lab West and North – Appleton Tower, fifth floor

Lab Week Exercise
submit by 5pm Friday 30 September 2011

do all the parts

Tutorials

ITO will assign you to tutorials, which start in Week 3.

Tuesday/Wednesday Computation and Logic

Thursday/Friday Functional Programming

Do the tutorial work before the tutorial!

Bring a printout of your work to the tutorial!

You may collaborate, but you are responsible for knowing the material.

Mark of 0% means you have no incentive to plagiarize.

Formative vs. Summative

0% Lab week exercise

0% Tutorial 1

0% Tutorial 2

0% Tutorial 3

10% Class Test

0% Tutorial 4

0% Tutorial 5

0% Tutorial 6

0% Tutorial 7

0% Mock Test

0% Tutorial 8

90% Final Exam

Any questions?

Any questions?

Questions make you look good !

Phil’s secret technique for asking questions.

Phil’s secret goal for this course

Part I

Introduction

Computational Thinking

“In their capacity as a tool computers will be but a ripple on
the surface of our culture. In their capacity as intellectual
challenge, they are without precedent in the cultural history of
mankind.”

Edsgar Dijkstra, 1930–2002

“Informatics” vs. “Computer Science”

“Computer science is no more about computers than
astronomy is about telescopes.”

Edsgar Dijkstra, 1930–2002

Why learn Haskell?

• Important to learn many languages over your career

• Functional languages increasingly important in industry

• Puts experienced and inexperienced programmers on an equal footing

• Operate on data structure as a whole rather than piecemeal

• Good for concurrency, which is increasingly important

What is Haskell?

• A functional programming language

• For use in education, research, and industry

• Designed by a committee

• Mature—over 20 years old!

“A History of Haskell: being lazy with class”,
Paul Hudak (Yale University),
John Hughes (Chalmers University),
Simon Peyton Jones (Microsoft Research),
Philip Wadler (Edinburgh University),
The Third ACM SIGPLAN History of Programming Languages
Conference (HOPL-III),
San Diego, California, June 9–10, 2007.

Look at these web pages:

ICFP 2011

Tsuru Capital

Sushi Gonpachi

Families of programming languages

• Functional
Erlang, F#, Haskell, Hope, Javascript, Miranda, O’Caml, Racket,
Scala, Scheme, SML

• More powerful

• More compact programs

• Object-oriented
C++, F#, Java, Javascript, O’Caml, Perl, Python, Ruby, Scala

• More widely used

• More libraries

Functional programming in the real world

• Google MapReduce, Sawzall

• Ericsson AXE phone switch

• Perl 6

• DARCS

• XMonad

• Yahoo

• Twitter

• Facebook

• Garbage collection

Functional programming is the new new thing

Erlang, F#, Scala attracting a lot of interest from developers

Features from functional languages are appearing in other languages

• Garbage collection Java, C#, Python, Perl, Ruby, Javascript

• Higher-order functions Java, C#, Python, Perl, Ruby, Javascript

• Generics Java, C#

• List comprehensions C#, Python, Perl 6, Javascript

• Type classes C++ “concepts”

Part II

Functions

What is a function?

• A recipe for generating an output from inputs:
“Multiply a number by itself”

• A set of (input, output) pairs:
(1,1) (2,4) (3,9) (4,16) (5,25) ...

• An equation:
f x = x2

• A graph relating inputs to output (for numbers only):

Kinds of data

• Integers: 42, -69

• Floats: 3.14

• Characters: ’h’

• Strings: "hello"

• Pictures:

Applying a function
invert :: Picture -> Picture

knight :: Picture

invert knight

invert

Composing functions
beside :: Picture -> Picture -> Picture

flipV :: Picture -> Picture

invert :: Picture -> Picture

knight :: Picture

beside (invert knight) (flipV knight)

invert

flipV

beside

Defining a new function
double :: Picture -> Picture

double p = beside (invert p) (flipV p)

double knight

invert

flipV

beside

double

Defining a new function
double :: Picture -> Picture

double p = beside (invert p) (flipV p)

double knight

double

Terminology

Type signature

Function declaration

double :: Picture -> Picture

double p = beside (invert p) (flipV p)

function name function body

Terminology

double knight

formal parameter actual parameter

expression

double p = beside (invert p) (flipV p)

function definition

Part III

The Rule of Leibniz

Operations on numbers
[culross]wadler: ghci

___ ___ _

/ _ \ /\ /\/ __(_)

/ /_\// /_/ / / | | GHC Interactive, version 6.7

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/

____/\/ /_/____/|_| Type :? for help.

Loading package base ... linking ... done.

Prelude> 3+3

6

Prelude> 3*3

9

Prelude>

Functions over numbers

squares.hs

square :: Integer -> Integer

square x = x * x

pyth :: Integer -> Integer -> Integer

pyth a b = square a + square b

Testing our functions
[culross]wadler: ghci squares.hs

___ ___ _

/ _ \ /\ /\/ __(_)

/ /_\// /_/ / / | | GHC Interactive, version 6.7

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/

____/\/ /_/____/|_| Type :? for help.

Loading package base ... linking ... done.

[1 of 1] Compiling Main (squares.hs, interpreted)

Ok, modules loaded: Main.

*Main> square 3

9

*Main> pyth 3 4

25

*Main>

A few more tests
*Main> square 0

0

*Main> square 1

1

*Main> square 2

4

*Main> square 3

9

*Main> square 4

16

*Main> square (-3)

9

*Main> square 10000000000

100000000000000000000

Declaration and evaluation
Declaration (file squares.hs)

square :: Integer -> Integer

square x = x * x

pyth :: Integer -> Integer -> Integer

pyth a b = square a + square b

Evaluation
[culross]wadler: ghci squares.hs

___ ___ _

/ _ \ /\ /\/ __(_)

/ /_\// /_/ / / | | GHC Interactive, version 6.7

/ /_\\/ __ / /___| | http://www.haskell.org/ghc/

____/\/ /_/____/|_| Type :? for help.

Loading package base-1.0 ... linking ... done.

Compiling Main (squares.hs, interpreted)

Ok, modules loaded: Main.

*Main> pyth 3 4

25

*Main>

The Rule of Leibniz

square :: Integer -> Integer

square x = x * x

pyth :: Integer -> Integer -> Integer

pyth a b = square a + square b

pyth 3 4

=

square 3 + square 4

=

3*3 + 4*4

=

9 + 16

=

25

The Rule of Leibniz

• Identity of Indiscernables: “No two distinct things exactly resemble
one another.” — Leibniz

That is, two objects are identical if and only if they satisfy the same
properties.

• “A difference that makes no difference is no difference.” — Spock

• “Equals may be substituted for equals.” — My high school teacher

Numerical operations are functions
(+) :: Integer -> Integer -> Integer

(*) :: Integer -> Integer -> Integer

Main*> 3+4

7

Main*> 3*4

12

3 + 4 stands for (+) 3 4

3 * 4 stands for (*) 3 4

Main*> (+) 3 4

7

Main*> (*) 3 4

12

Precedence and parentheses

Function application takes precedence over infix operators.
(Function applications binds more tightly than infix operators.)

square 3 + square 4

=

(square 3) + (square 4)

Multiplication takes precedence over addition.
(Multiplication binds more tightly than addition.)

3*3 + 4*4

=

(3*3) + (4*4)

Associativity

Addition is associative.

3 + (4 + 5)

=

3 + 9

=

12

=

7 + 5

=

(3 + 4) + 5

Addition associates to the left .

3 + 4 + 5

=

(3 + 4) + 5

Part IV

QuickCheck

QuickCheck properties
squares prop.hs

import Test.QuickCheck

square :: Integer -> Integer

square x = x * x

pyth :: Integer -> Integer -> Integer

pyth a b = square a + square b

prop_square :: Integer -> Bool

prop_square x =

square x >= 0

prop_squares :: Integer -> Integer -> Bool

prop_squares x y =

square (x+y) == square x + 2*x*y + square y

prop_pyth :: Integer -> Integer -> Bool

prop_pyth x y =

square (x+y) == pyth x y + 2*x*y

Running the program
[culross]wadler: ghci squares_prop.hs

GHCi, version 6.8.3: http://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.

[1 of 1] Compiling Main (squares_prop.hs, interpreted)

*Main> quickCheck prop_square

Loading package old-locale-1.0.0.0 ... linking ... done.

Loading package old-time-1.0.0.0 ... linking ... done.

Loading package random-1.0.0.0 ... linking ... done.

Loading package mtl-1.1.0.1 ... linking ... done.

Loading package QuickCheck-2.1 ... linking ... done.

+++ OK, passed 100 tests.

*Main> quickCheck prop_squares

+++ OK, passed 100 tests.

*Main> quickCheck prop_pyth

+++ OK, passed 100 tests.

Part V

The Rule of Leibniz (reprise)

Gottfried Wilhelm Leibniz (1646–1716)

Gottfried Wilhelm Leibniz (1646–1716)

Anticipated symbolic logic, discovered calculus (independently of Newton),
introduced the term “monad” to philosophy.

“The only way to rectify our reasonings is to make them as
tangible as those of the Mathematicians, so that we can find our
error at a glance, and when there are disputes among persons, we
can simply say: Let us calculate, without further ado, to see who
is right.”

“In symbols one observes an advantage in discovery which is
greatest when they express the exact nature of a thing briefly and,
as it were, picture it; then indeed the labor of thought is
wonderfully diminished.”

