INFR08013 INFORMATICS 1 - FUNCTIONAL PROGRAMMING

Friday 12th August 2016

09:30 to 11:30

INSTRUCTIONS TO CANDIDATES

1. Note that ALL QUESTIONS ARE COMPULSORY.

2. DIFFERENT QUESTIONS MAY HAVE DIFFERENT NUMBERS OF TOTAL MARKS. Take note of this in allocating time to questions.

3. This is an OPEN BOOK examination: notes and printed material are allowed, and USB sticks (read only), but no electronic devices.

4. CALCULATORS MAY NOT BE USED IN THIS EXAMINATION

Convener: D. K. Arvind
External Examiner: C. Johnson

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY
1. (a) Write a function \(f :: \text{String} \rightarrow \text{Int} \) that converts a list of binary digits to the corresponding numerical value. For example:

\[
\begin{align*}
 f \ "101" &= (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 5 \\
 f \ "11" &= 3 \\
 f \ "1101" &= 13 \\
 f \ "110111" &= 55
\end{align*}
\]

Use basic functions, list comprehension, and library functions, but not recursion. You may assume that the input is a string of binary digits. Credit may be given for indicating how you have tested your function.

[Hint: Start by reversing the order of the digits in the list.] [16 marks]

(b) Write a second function \(g :: \text{String} \rightarrow \text{Int} \) that behaves like \(f \), this time using basic functions, library functions and recursion, but not list comprehension. Credit may be given for indicating how you have tested your function.

[Hint: Again, start by reversing the order of the digits in the list.] [16 marks]
2. (a) Write a function \(p :: [\text{Int}] \to \text{Bool} \) that checks that every number in a list that is divisible by 3 is odd. For example:

\[
\begin{align*}
p [1,15,153,83,64,9] & = \text{True} \\
p [1,12,153,83,9] & = \text{False} \\
p [] & = \text{True} \\
p [2,151] & = \text{True}
\end{align*}
\]

Use basic functions, list comprehension, and library functions, but not recursion. Credit may be given for indicating how you have tested your function. \([12 \text{ marks}]\)

(b) Write a second function \(q :: [\text{Int}] \to \text{Bool} \) that behaves like \(p \), this time using basic functions and recursion, but not list comprehension or library functions. Credit may be given for indicating how you have tested your function. \([12 \text{ marks}]\)

(c) Write a third function \(r :: [\text{Int}] \to \text{Bool} \) that also behaves like \(p \), this time using the following higher-order library functions:

\[
\begin{align*}
\text{map} & :: (a \to b) \to [a] \to [b] \\
\text{filter} & :: (a \to \text{Bool}) \to [a] \to [a] \\
\text{foldr} & :: (a \to b \to b) \to b \to [a] \to b
\end{align*}
\]

Do not use recursion or list comprehension. Credit may be given for indicating how you have tested your function. \([12 \text{ marks}]\)
3. The following data type represents propositional formulas built from a single variable (X), constants true (T) and false (F), negation (Not) and implication (=>):

```haskell
data Prop = X
    | F
    | T
    | Not Prop
    | Prop :->: Prop
```

The template file includes a function `showProp :: Prop -> String` which converts formulas into a readable format, and code that enables QuickCheck to generate arbitrary values of type `Prop`, to aid testing.

(a) Write a function `eval :: Prop -> Bool -> Bool`, which given a propositional formula and the value of the variable X returns the value of the formula. Recall the truth tables for negation and implication:

<table>
<thead>
<tr>
<th>P</th>
<th>Not P</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ::->: Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

For example,

```
> eval (Not T) True
False
> eval (Not X) False
True
> eval (Not X ::-> Not (Not X)) True
True
> eval (Not X ::-> Not (Not X)) False
False
> eval (Not (Not X ::-> F)) True
False
> eval (Not (Not X ::-> F)) False
True
```

Credit may be given for indicating how you have tested your function. [16 marks]

(b) Write a function `simplify :: Prop -> Prop` that converts a propositional formula to an equivalent simpler formula by repeated use of the following laws:

- `Not T = F`
- `Not F = T`
- `Not (Not p) = p`
- `T ::->: p = p`
- `F ::->: p = T`
- `p ::->: T = T`
- `p ::->: F = Not p`

QUESTION CONTINUES ON NEXT PAGE
For example,

\[
\begin{align*}
\text{simplify (Not F)} & = T \\
\text{simplify (Not X :->: Not (X :->: T))} & = X \\
\text{simplify (Not (Not X :->: Not T))} & = \neg X \\
\text{simplify (Not (F :->: Not (Not X)))} & = F
\end{align*}
\]

Credit may be given for indicating how you have tested your function. [16 marks]