
UNIVERSITY OF EDINBURGH

COLLEGE OF SCIENCE AND ENGINEERING

SCHOOL OF INFORMATICS

Date: Monday 23rd October 2017
Duration: 35 minutes

INFORMATICS 1 — FUNCTIONAL PROGRAMMING
CLASS TEST

INSTRUCTIONS TO CANDIDATES

• ALL QUESTIONS ARE COMPULSORY.

• DIFFERENT QUESTIONS MAY HAVE DIFFERENT NUMBERS OF
TOTAL MARKS. Take note of this in allocating time to questions.

• WRITE YOUR ANSWERS ON THE EXAM PAPER ITSELF. Write as legibly as
possible.

• In the answer to any part of any question, you may use any function specified in an
earlier part of that question. You may do this whether or not you actually provided a
definition for the earlier part; nor will you be penalized in a later part if your answer
to an earlier part is incorrect.

• Unless otherwise stated, you may define any number of helper functions and use any
function from the standard prelude, including the libraries Char and List. You need
not write import declarations.

• As an aid to memory, some functions from the standard prelude that you may wish
to use are listed on the next page. You need not use all the functions.

PLEASE INSERT YOUR NAME AND MATRICULATION NUMBER IN
THE SPACE BELOW:

MATRICULATION NUMBER NAME

div, mod :: Integral a => a -> a -> a

even, odd :: Integral a => a -> Bool

(+), (*), (-), (/) :: Num a => a -> a -> a

(<), (<=), (>), (>=) :: Ord => a -> a -> Bool

(==), (/=) :: Eq a => a -> a -> Bool

(&&), (||) :: Bool -> Bool -> Bool

not :: Bool -> Bool

max, min :: Ord a => a -> a -> a

isAlpha, isAlphaNum, isLower, isUpper, isDigit :: Char -> Bool

toLower, toUpper :: Char -> Char

ord :: Char -> Int

chr :: Int -> Char

Figure 1: Basic functions

sum, product :: (Num a) => [a] -> a and, or :: [Bool] -> Bool

sum [1.0,2.0,3.0] = 6.0 and [True,False,True] = False

product [1,2,3,4] = 24 or [True,False,True] = True

maximum, minimum :: (Ord a) => [a] -> a reverse :: [a] -> [a]

maximum [3,1,4,2] = 4 reverse "goodbye" = "eybdoog"

minimum [3,1,4,2] = 1

concat :: [[a]] -> [a] (++) :: [a] -> [a] -> [a]

concat ["go","od","bye"] = "goodbye" "good" ++ "bye" = "goodbye"

(!!) :: [a] -> Int -> a length :: [a] -> Int

[9,7,5] !! 1 = 7 length [9,7,5] = 3

head :: [a] -> a tail :: [a] -> [a]

head "goodbye" = ’g’ tail "goodbye" = "oodbye"

init :: [a] -> [a] last :: [a] -> a

init "goodbye" = "goodby" last "goodbye" = ’e’

takeWhile :: (a->Bool) -> [a] -> [a] take :: Int -> [a] -> [a]

takeWhile isLower "goodBye" = "good" take 4 "goodbye" = "good"

dropWhile :: (a->Bool) -> [a] -> [a] drop :: Int -> [a] -> [a]

dropWhile isLower "goodBye" = "Bye" drop 4 "goodbye" = "bye"

elem :: (Eq a) => a -> [a] -> Bool replicate :: Int -> a -> [a]

elem ’d’ "goodbye" = True replicate 5 ’*’ = "*****"

zip :: [a] -> [b] -> [(a,b)]

zip [1,2,3,4] [1,4,9] = [(1,1),(2,4),(3,9)]

Figure 2: Library functions

1

1. (a) Write a function f :: [Int] -> Int that computes the sum of the squares of
those numbers in a list that are divisible by 3 but not by 5. For example:

f [] = 0

f [9,-3] = 90

f [0,30,2,7] = 0

f [-6,15,2,1,3] = 45

Use basic functions, list comprehension, and library functions, but not recursion.

[20 marks]

(b) Write a second function g :: [Int] -> Int that behaves identically to f, this
time using basic functions and recursion, but not list comprehension or other
library functions.

[20 marks]

(c) Write a QuickCheck property prop_fg to confirm that f and g behave identically.
Give the type signature of prop_fg and its definition.

[5 marks]

2

2. (a) We say that an integer x is much smaller than an integer y if either x ≥ 0 and
y is more than twice as large as x, or x < 0 and y is larger than x/2.

Define a function mst :: Int -> Int -> Bool that returns True if its first
argument is much smaller than its second argument and False otherwise. For
example:

mst (-10) (-5) == False mst 7 14 == False

mst (-10) (-4) == True mst 7 15 == True

mst (-2) 3 == True

[15 marks]

(b) Define a function ordered :: [Int] -> Bool that returns True if the integers
in its argument list are in ascending order according to mst, and False otherwise.
For example:

ordered [] = True

ordered [-4,-1,3,1,9] = False

ordered [-4,-1,1,3,9] = True

ordered [-4,-1,1,2,9] = False

Your definition may use basic functions, list comprehension, and library func-
tions, but not recursion.

[20 marks]

(c) Define another function ordered’ :: [Int] -> Bool that behaves identically
to ordered, this time using basic functions and recursion, but not list compre-
hension or library functions.

[20 marks]

3

