Why 1s Haskell called Haskell”

Philip Wadler
University of Edinburgh

wadler@inf.ed.ac.uk

Lambda

G

Part 0

Boolean algebra

George Boole (1815-1864)

-/
\

AN INVESTIGATION OF

THE LAWS
OF THOUGHT

ON WHICH ARE FOUNDED
THE MATHEMATICAL
THEORIES OF LOGIC

AND PROBABILITIES

1

Boole 1847: Mathematical analysis of logic

The primary canonical forms already determined for the expression of Pro-
positions, are

All Xs are Ys, x(1 —y) =0, s 5 o
No Xs are Ys, Xxyr=4, S ¥ ob
Some Xs are Ys, U= Xy, sae & alks
Some Xs are not Ys, v=x(1—-y)0.

On examining these, we perceive that E and I are symmetrical with
respect to x and y, so that x being changed into y, and y into x, the equa-
tions remain unchanged. Hence E and I may be interpreted into

No Ys are Xs,
Some Ys are Xs,

respectively. Thus we have the known rule of the Logicians, that particular
26|27 affirmative and universal negative Propositions admit of simple conversion. |

Boole 1854: Laws of Thought

Prorosition 1V,

That axiom of metaphysicians wlich ts termed the principle of
contradiction, and which affirms that it is impossible for any being to
possess a quality, and at the same time not lo possess ity s 4 conse-
quence of the fundamental law of thought, whose expression s 2° = x.

Let us write this equation in the form

x — x* =0,
whence we have
z (1 -a)=0; (1)

both these transformiations being justified by the axiomatic laws
of combination and transposition (II.13). Let us, for simplicity

Part 1

Frege’s Begriffsschrift

Gotlob Frege (1848-1925)

Frege 1879 — modus ponens

We could write this inference perhaps as follows :

F—4

—B
 —
—a.

This would become awkward if long expressions were to take the places of 4 and B,
since each of them would have to be written twice. That is why I use the following

Frege 1879 — modus ponens

We could write this inference perhaps as follows :

—4

—B
 —
—a.

This would become awkward if long expressions were to take the places of 4 and B,
since each of them would have to be written twice. That is why I use the following

BDOA B
A

Frege 1879 — quantification

It 15 clear also that from

I—— D(a)

— A
we can derive
\— P(a)
— A

if A is an expression in which a does not occur and if a stands only in the argument places
of @(a).** If —C—P(a) is denied, we must be able to specify a meaning for a

such that @(a) will be denied. If, therefore, —%— ®(a) were to be denied and

Frege 1879 — quantification

It 15 clear also that from

I—— D(a)

— A
we can derive
— D(a)
— A

if A is an expression in which a does not occur and if a stands only in the argument places
of @(a).** If —C—P(a) is denied, we must be able to specify a meaning for a

such that @(a) will be denied. If, therefore, —%— ®(a) were to be denied and

AD P(a)
ADVa. ®(a)

Frege 1879

52

We see how this judgment replaces one mode of inference, namely, Felapton or
Fesapo, between which we do not distinguish here since no subject has been singled

J(®)
g(b)
h(b)
& J(a)
g(a)

out.

f(4) f(4)
EQ(A)
~4)

o o8
=

58

b
c

fe)

——f(@)

58
fid)
c

(4)
= 9(4)
x

(8):

a| f(z)
b [g(x)

a | &r— f(a)
VE.q(a)

This judgment replaces the mode of inference Barbara when the minor premiss, g(),
has a particular content.

FREGE

h(a)

f®)
h(b)
g(b)
fla)
g(a)
R(a)

T

fz)
f(a)
g(a)
g(@)

62

(60).

(61).

(61):

a f(@)

h(z)

(62). ‘|w"——|éf (a)
g(a)

Fa) g(4)
¢ :’:h(fl)

BEGRIFFSSCHRIFT

I_—Iq

J(=)
fla)

53

(63).

(64).

(65).

Frege in modern notation

BDA B
A
AD(BDA)

(CO>(BD2A)D(CDO>B)D(CDA))
(CD>(BD>A)D(BD(CDA))

Part 2

Gentzen’s Natural Deduction

Gerhard Gentzen (1909-1945)

Gentzen 1934: Natural Deduction

Vit Bt

e S |
U]

B
HoB

&-E

A& D

A & B

U

B

v—I

A B

AvB Av D

3-I

5a
Ly

]

[2]

-

v—E
(U] [B]
AvB € €

g
i
=

>.
9| >

Gentzen 1934: Natural Deduction

[A]*
: ADB A .
:)_
B
5.1 b
ADB

A B A& B A& B

&-1 — &-Ey — &-E

A proof

A& B

D)
(B& A) > (A& B)

Simplifying proofs

A]?
B
O-I*
ADB A
O-E
B
A B
&-1
A& B
&Ry =

Simplifying a proot

B & AJ? (B & AJ?
&-F _
~ , - &-Eq
&-1
A& B) (B]Y [A]*
(B& A) > (A& B) B& A &l
~-E

A& B

Simplifying a proot

1B & A]? B & A)?

&-Eq

A B
A& B

D)
(B& A) > (A& B)

&-Eg

Simplifying a proot

B & AJ? B & A]?
— & _B]&EO
&-1
A& B - (Bl [A)*
(B& A) > (A& B) sea
A& B ok
BlY | '
P, By A
BLA B& A
A g
&-1
A& B
J
[Al* [BJY
&-1

Part 3

Church’s Lambda Calculus

Alonzo Church (1903-1995)

Church 1932: Lambda Calculus

An occurrence of a variable x in a given formula is called an ocewrrence
of X as a bound variable in the given formula 1f it 1s an occurrence of x
in a part of the formula of the form 2x [M]; that is, if there is a formula M
such that Zx[M] occurs in the given formula and the occurrence of X in
question is an occurrence in Ax|M]. All other occurrences of a variable
in a formula are called occurrences as a fiee variable.

A formula is said to be well-formed if it is a variable, or if it is one

Reduction rules

(Az.u)t = ult/x]

fst (t,u) = t

snd (t,u) = u

Simplifying a term

(Az. (snd z, fst 2)) (y, x)

Simplifying a term

(Az. (snd z, fst 2)) (y, x)

Y
(snd (y, x),fst (y, x))

Simplifying a term

(Az. (snd z, fst 2)) (y, x)
4
(snd (y, x),fst (y, x))
Y

(z,y)

Church 1940: Typed Lambda Calculus

[z A)*
: s:ADDB t: A .
) 5.
u: B :
T st: B
Ae.u:ADDB
t: A u: B s: A& B s: A& B
&-1 &-F &-Eq

(t,u) : A& B fsts: A ’ snd s : B

A program

|z : B& A)? 1z : B & A)?
&-Eq &-Eq
snd 2 : A fst z : B
&-1
(snd z,fst z) : A& B

Az.(snd z,fst z) : (B& A) D (A& B)

D-17

Simplitfying programs

[z A]*
u:.B j t:.A
D-1* : :
Ae.u:ADB t: A :
O-E = ult/x|: B
(Az.u)t: B
t:.A u:.B
&-1
(t,u): A& B

&-Eq = t :. A

fst (t,u): A

Simplifying a program

1z : B & A]? |z : B& AJ?
&-Eq &-Eg
snd z : A fst z: B

&-1

(snd z,fst z) : A& B ;
D_ z
Az.(snd z,fst z) : (B& A) D (A& B)

ly: BlY [z Al

(y,x): B& A

(Az.(snd z,fst 2)) (y,x) : A& B

&-1
O-BE

Simplifying a program

1z : B & A]? |z : B& AJ?
&-Eq &-Eq
snd z: A fst z: B
&-1
(snd z,fst z) : A& B ly: BlY |z A"
D-I7 &-1
Az.(snd z,fst z) : (B& A) D (A& B) (y,x): B& A .
-
(Az.(snd z,fst 2)) (y,x) : A& B
4
: BlY |x AT : BlY |x AlF
[y(]) 1_[3& A] o [y(]) 1[3& A] o
,) LX)
- B, - &y
snd (y,x) : A fst (y,x) : B

(snd (y,x),fst (y,x)) : A& B

Simplifying a program

1z : B & A]? |z : B& AJ?

&-Eq &-Eq
snd z: A fst z: B
&-1
(snd z,fst z) : A& B I ly: BlY |z: A"
D_ z
Az.(snd z,fst z) : (B& A) D (A& B) (y,x): B& A
(Az.(snd z,fst 2)) (y,x) : A& B
4
: BlY |x AT : BlY |x AlF
[y(1) A [y(}) A
,) LX)
’ B, &y
snd (y,x) : A fst (y, x):B&I
(sud (y,z), fst (y,2)) : A& B)
4

[z A]* [y - BJY
(x,y) : A& B

Part 4

The Curry-Howard Isomorphism

Haskell Curry (1900-1982) / William Howard

Howard 1980

THE FORMULAE-AS-TYPES NOTION OF CONSTRUCTION

W. A. Howard

Department of Mathematics, University of
Illinois at Chicago Cirele, Chicago, Illinois 60680, U.S.A.

Dedicated to H. B. Curry on the occasion of his 80th birthday.

The following consists of notes which were privately circu-
lated in 1969. Since they have been referred to a few times in
the literature, it seems worth while to publish them. They have
been rearranged for easier reading, and some inessential correc-

tions have been made.

Howard 1980

1. Formulation of the sequent calculus

Let P(D) denote positive implicational propositional logic.
The prime formulae of P(D) are propositional variables. TIf
@ and B are formulae, so is o DB . A sequent has the form
I'> B, where T 1is a (possibly empty) finite sequence of formu-
lae and B 1is a formula. The axioms and rules of inference of

P(D) are as follows.

(L2 Axioms: all sequents of the form
o > o
'y a > R
(1.2) '+ a B
(1.3) L =0 oy A E BB
L5 =+ B
(1.4} Thinning, permutation and contraction

rules

Howard 1980

2. Type symbols, terms and constructions

By a type symbol is meant a formula of P(D) . We will con-

sider a A-formalism in which each term has a type symbol o as

a superscript (which we may not always write); the term is said

to be of type a. The rules of term formation are as follows.

2.1) Variables Xa, YB,... are terms
(2.2) A-abstraction: from FB get

(. phye B
(2.3) Application: from & 2 B and H"

get (G&DBHu)B .

Part 5

Aliens

How to talk to aliens

HYPERFINE TRANSITION OF SILHOUETTE OF BINARY EQUIVALENT
MEUTRAL HYDROGEN SPACECRAFT OF DECIMAL &

POSITION OF SUN PLANETS OF SOLAR
RELATIVE TO 14 SYSTEM AND BINARY

PULSARS AND THE RELATIVE DISTANCES
CENTER OF THE GALAXY

Independence Day

A universal programming language?

|

TS

Lambda is Omniversal

o

Functional Programming

CAMBRIDCE

CNTYIRAITY P

Special thanks to
Willem Heijltjes, Tamise Totterdel, Alex Simpson

for making the course run

Adam and Leora Wadler

for inspiration

You

for listening

