
Informatics 1
Functional Programming Lectures 17 and 18
Monday 23 and Tuesday 24 November 2009

IO and Monads

Philip Wadler
University of Edinburgh

The 2009 Informatics 1 Competition
• Prize: A bottle of champagne or book token equivalent

• Sponsored by Galois (galois.com)

• List everyone who worked on the entry
If you win, do you want Champagne or a book token?

• Deadline: 12pm Friday 27 November 2007
Email to w.b.heijltjes@sms.ed.ac.uk

• You may find some inspiration here:

www.contextfreeart.org

(Thanks to Aleksandar Krastev for the suggestion.)

• Previous year entries are online

http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/#competition

Required reading
Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Chapters 1–3 (pp. 1–52): by Mon 28 Sep 2009.
Chapters 4, 5, & 7 (pp. 53–95, 115–134): by Mon 5 Oct 2009.
Chapters 6 & 8 (pp. 96–114, 135–151): by Mon 12 Oct 2009.
Chapters 9–11 (pp. 152–209): by Mon 19 Oct 2009.
(Class exam)
Chapters 12–14 (pp. 210–279): by Mon 2 Nov 2009.
Chapters 15–16 (pp. 280–336): by Mon 9 Nov 2009.
Chapters 18–19 (pp. 337–435): by Mon 16 Nov 2009.
Chapter 20 (pp. 436–441): by Mon 23 Nov 2009.

Thompson and other books available in ITO.

Part I

The Mind-Body Problem

The Mind-Body Problem

Part II

Commands

Print a character
putChar :: Char -> IO ()

For instance,

putChar ’!’

denotes the command that, if it is ever performed, will print an exclamation mark.

Combine two commands
(>>) :: IO () -> IO () -> IO ()

For instance,

putChar ’?’ >> putChar ’!’

denotes the command that, if it is ever performed, prints a question mark followed
by an exclamation mark.

Do nothing
done :: IO ()

The term done doesn’t actually do nothing; it just specifies the command that, if
it is ever performed, won’t do anything. (Compare thinking about doing nothing
to actually doing nothing: they are distinct enterprises.)

Print a string
putStr :: String -> IO ()
putStr [] = done
putStr (x:xs) = putChar x >> putStr xs

So putStr "?!" is equivalent to

putChar ’?’ >> (putChar ’!’ >> return ())

and both of these denote a command that, if it is ever performed, prints a question
mark followed by an exclamation mark.

Higher-order functions
More compactly, we can define putStr as follows.

putStr :: String -> IO ()
putStr = foldr (>>) done . map putChar

The operator >> has identity done and is associative.

m >> done = m
done >> m = m
(m >> n) >> o = m >> (n >> o)

Main
By now the you may be desperate to know how is a command ever performed?
Here is the file Confused.hs:

module Confused where

main :: IO ()
main = putStr "!?"

Running this program prints an indicator of perplexity:

[comrie]wadler: runghc Confused.hs
?![comrie]wadler:

Thus main is the link from Haskell’s mind to Haskell’s body — the analogue of
Descartes’s pineal gland.

Print a string followed by a newline
putStrLn :: String -> IO ()
putStrLn xs = putStr xs >> putChar ’\n’

Here is the file ConfusedLn.hs:

module ConfusedLn where

main :: IO ()
main = putStrLn "!?"

This prints its result more neatly:

[comrie]wadler: runghc ConfusedLn.hs
?!
[comrie]wadler:

Part III

Equational reasoning

Equational reasoning lost
This Standard ML program prints “haha” as a side effect.

output(std_out,"ha"); output(std_out,"ha")

But this Standar ML program only prints “ha” as a side effect.

let val x = output(std_out,"ha") in x; x end

This Standard ML program again prints “haha” as a side effect.

let fun f () = output(std_out,"ha") in f (); f () end

Equational reasoning regained
In Haskell, the term

(1+2) * (1+2)

and the term

let x = 1+2 in x * x

are equivalent (and both evaluate to 9).

In Haskell, the term

putString "ha" >> putString "ha"

and the term

let m = putString "ha" in m >> m

are also entirely equivalent (and both print "haha").

Part IV

Commands with values

Read a character
Previously, we wrote IO () for the type of commands that yield no value. In
Haskell, () is the trivial type that contains just one non-bottom value, which is
also written ().

We write IO Char for the type of commands that yield a value of type Char.

Here is a function to read a character.

getChar :: IO Char

Performing the command getChar when the input contains "abc" yields the
value ’a’ and remaining input "bc".

Do nothing and return a value
More generally, we write IO a for commands that return a value of type a.

The command

return :: a -> IO a

is similar to done, in that it does nothing, but it also returns the given value.

Performing the command

return [] :: IO String

when the input contains "def" yields the value [] and an unchanged input
"def".

Combining commands with values
We combine command with an operator written >>= and pronounced “bind”.

(>>=) :: IO a -> (a -> IO b) -> IO b

For example, performing the command

getChar >>= \x -> putChar (toUpper x)

when the input is "abc" produces the output "A", and the remaining input is
"bc".

The “bind” operator in detail
(>>=) :: IO a -> (a -> IO b) -> IO b

If

m :: IO a

is a command yielding a value of type a, and

k :: a -> IO b

is a function from a value of type a to a command yielding a value of type b, then

m >>= k :: IO b

is the command that, if it is ever performed, behaves as follows:

first perform command m yielding a value x of type a;
then perform command k x yielding a value y of type b;

then yield the final value y.

Reading a line
Here is a program to read the input until a newline is encountered, and to return a
list of the values read.

getLine :: IO String
getLine = getChar >>= \x ->

if x == ’\n’ then
return []

else
getLine >>= \xs ->
return (x:xs)

For example, given the input "abc\ndef" This returns the string "abc" and
the remaining input is "def".

Commands as a special case
The general operations on commands are:

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

The command done is a special case of return,
and the operator >> is a special case of >>=.

done :: IO ()
done = return ()

(>>) :: IO () -> IO () -> IO ()
m >> n = m >>= \() -> n

An analogue of “let”
Although it may seem odd at first sight, this combinator is reassuringly similar to
the familiar Haskell “let” expression. Here is a type rule for “let”.

E ` m :: a

E, x :: a ` n :: b

E ` let x = m in n :: b

Typically, “bind” is combined with lambda expressions in a way that resembles
“let” expressions. Here is the corresponding type rule.

E ` m :: IO a

E, x :: a ` n :: IO b

E ` m >>= \x -> n :: IO b

Echoing input to output
This program echos its input to its output, putting everything in upper case, until
an empty line is entered.

echo :: IO ()
echo = getLine >>= \line ->

if line == "" then
return ()

else
putStrLn (map toUpper line) >>
echo

main :: IO ()
main = echo

Testing it out
[comrie]wadler: runghc Echo.hs
One line
ONE LINE
And, another line!
AND, ANOTHER LINE!
[comrie]wadler:

Part V

“Do” notation

Reading a line in “do” notation
getLine :: IO String
getLine = getChar >>= \x ->

if x == ’\n’ then
return []

else
getLine >>= \xs ->
return (x:xs)

is equivalent to

getLine :: IO String
getLine = do {

x <- getChar;
if x == ’\n’ then
return []

else do {
xs <- getLine;
return (x:xs)

}
}

Echoing in “do” notation
echo :: IO ()
echo = getLine >>= \line ->

if line == "" then
return ()

else
putStrLn (map toUpper line) >>
echo

is equivalent to

echo :: IO ()
echo = do {

line <- getLine;
if line == "" then
return ()

else do {
putStrLn (map toUpper line);
echo

}
}

“Do” notation in general
Each line x <- e; ... becomes e >>= \x -> ...

Each line e; ... becomes e >> ...

For example,

do { x1 <- e1;
x2 <- e2;
e3;
x4 <- e4;
e5;
e6 }

is equivalent to

e1 >>= \x1 ->
e2 >>= \x2 ->
e3 >>
e4 >>= \x4 ->
e5 >>
e6

Part VI

Monads

Monoids
A monoid is a pair of an operator (@@) and a value u, where the operator has the
value as identity and is associative.

u @@ x = x
x @@ u = x
(x @@ y) @@ z = x @@ (y @@ z)

Examples of monoids:

(+) and 0
(*) and 1

(||) and False
(&&) and True
(++) and []

(>>) and done

Monads
We know that (>>) and done satisfy the laws of a monoid.

done >> m = m
m >> done = m
(m >> n) >> o = m >> (n >> o)

Similarly, (>>=) and return satisfy the laws of a monad.

return v >>= \x -> m = m[x:=v]
m >>= \x -> return x = m
(m >>= \x -> n) >>= \y-> o = m >>= \x -> (n >>= \y -> o)

Laws of Let
We know that (>>) and done satisfy the laws of a monoid.

done >> m = m
m >> done = m
(m >> n) >> o = m >> (n >> o)

Similarly, (>>=) and return satisfy the laws of a monad.

return v >>= \x -> m = m[x:=v]
m >>= \x -> return x = m
(m >>= \x -> n) >>= \y-> o = m >>= \x -> (n >>= \y -> o)

The three monad laws have analogues in “let” notation.

let x = v in m = m[x:=v]
let x = m in x = m
let y = (let x = m in n) in o

= let x = m in (let y = n in o)

“Let” in languages with and without effects
let x = v in m = m[x:=v]
let x = m in x = m
let y = (let x = m in n) in o

= let x = m in (let y = n in o)

These laws hold even in a language such as SML, where the presence of side
effects disables many forms of equational reasoning. For the first law to be true, v
must be not an arbitrary term but a value, such as a constant. A value immediately
evaluates to itself, hence it can have no side effects.

While in SML one only has the above three laws for “let”, in Haskell one has a
much stronger law, where one may replace a variable by any term, rather than by
any value.

let x = m in n = n[x:=m]

Part VII

Roll your own monad—IO

The Monad type class
class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

My own IO monad (1)
module MyIO(MyIO, myPutChar, myGetChar, convert) where

type Input = String
type Remainder = String
type Output = String

data MyIO a = MyIO (Input -> (a, Remainder, Output))

apply :: MyIO a -> Input -> (a, Remainder, Output)
apply (MyIO f) inp = f inp

Note that the type MyIO is abstract. The only operations on it are the monad
operations, myPutChar, myGetChar, and convert. The operation apply is
not exported from the module.

My own IO monad (2)
myPutChar :: Char -> MyIO ()
myPutChar c = MyIO (\inp -> ((), inp, [c]))

myGetChar :: MyIO Char
myGetChar = MyIO (\(ch:rem) -> (ch, rem, ""))

For example,

apply myGetChar "abc" == (’a’, "bc", "")
apply myGetChar "bc" == (’b’, "c", "")
apply (myPutChar ’A’) "def" == ((), "def", "A")
apply (myPutChar ’B’) "def" == ((), "def", "B")

My own IO monad (3)
instance Monad MyIO where
return x = MyIO (\inp -> (x, inp, ""))
m >>= k = MyIO (\inp ->

let (x, rem1, out1) = apply m inp in
let (y, rem2, out2) = apply (k x) rem1 in
(y, rem2, out1++out2))

For example

apply
(myGetChar >>= \x -> myGetChar >>= \y -> return [x,y])
"abc"

== ("ab", "c", "")

apply
(myPutChar ’A’ >> myPutChar ’B’)
"def"

== ((), "def", "AB")

apply
(myGetChar >>= \x myPutChar (toUpper x))
"abc"

== ((), "bc", "A")

My own IO monad (4)
convert :: MyIO () -> IO ()
convert m = interact (\inp ->

let (x, rem, out) = apply m inp in
out)

Here

interact :: (String -> String) -> IO ()

is part of the standard prelude. The entire input is converted to a string (lazily) and
passed to the function, and the result from the function is printed as output (also
lazily).

Using my own IO monad (1)
module MyEcho where

import Char
import MyIO

myPutStr :: String -> MyIO ()
myPutStr = foldr (>>) (return ()) . map myPutChar

myPutStrLn :: String -> MyIO ()
myPutStrLn s = myPutStr s >> myPutChar ’\n’

Using my own IO monad (2)
myGetLine :: MyIO String
myGetLine = myGetChar >>= \x ->

if x == ’\n’ then
return []

else
myGetLine >>= \xs ->
return (x:xs)

myEcho :: MyIO ()
myEcho = myGetLine >>= \line ->

if line == "" then
return ()

else
myPutStrLn (map toUpper line) >>
myEcho

main :: IO ()
main = convert myEcho

Trying it out
[comrie]wadler: runghc MyEcho
This is a test.
THIS IS A TEST.
It is only a test.
IT IS ONLY A TEST.
Were this a real emergency, you’d be dead now.
WERE THIS A REAL EMERGENCY, YOU’D BE DEAD NOW.

[comrie]wadler:

You can use “do” notation, too
myGetLine :: MyIO String
myGetLine = do {

x <- myGetChar;
if x == ’\n’ then
return []

else do {
xs <- myGetLine;
return (x:xs)

}
}

myEcho :: MyIO ()
myEcho = do {

line <- myGetLine;
if line == "" then
return ()

else do {
myPutStrLn (map toUpper line);
myEcho

}
}

Part VIII

The monad of lists

The monad of lists
-- class Monad m where
-- return :: a -> m a
-- (>>=) :: m a -> (a -> m b) -> m b

-- instance Monad [] where

-- return :: a -> [a]
-- return x = [x]

-- (>>=) :: [a] -> (a -> [b]) -> [b]
-- m >>= k = [y | x <- m, y <- k x]

Equivalently, we can define:

-- [] >>= k = []
-- (x:xs) >>= k = (k x) ++ (xs >>= k)

or

-- m >>= k = concat (map k m)

‘Do’ notation and the monad of lists
pairs :: Int -> [(Int, Int)]
pairs n = [(i,j) | i <- [1..n], j <- [(i+1)..n]]

is equivalent to

pairs’ :: Int -> [(Int, Int)]
pairs’ n = do {

i <- [1..n];
j <- [(i+1)..n];
return (i,j)

}

For example,

[comrie]wadler: ghci Pairs
GHCi, version 6.10.4: http://www.haskell.org/ghc/ :? for help
Pairs> pairs 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
Pairs> pairs’ 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

Monads with sum
-- class Monad m => MonadPlus m where
-- mzero :: m a
-- mplus :: m a -> m a -> m a

-- instance MonadPlus [] where

-- mzero :: [a]
-- mzero = []

-- mplus :: [a] -> [a] -> [a]
-- mplus = (++)

-- guard :: MonadPlus => Bool -> m ()
-- guard False = mzero
-- guard True = return ()

-- msum :: MonadPlus => [m a] -> m a
-- msum = foldr mplus mzero

Using guards
pairs’’ :: Int -> [(Int, Int)]
pairs’’ n = [(i,j) | i <- [1..n], j <- [1..n], i < j]

is equivalent to

pairs’’’ :: Int -> [(Int, Int)]
pairs’’’ n = do {

i <- [1..n];
j <- [1..n];
guard (i < j);
return (i,j)

}

For example,

[comrie]wadler: ghci Pairs
GHCi, version 6.10.4: http://www.haskell.org/ghc/ :? for help
Pairs> pairs’’ 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
Pairs> pairs’’’ 4
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

Part IX

The monad of parsers

Module ParseMonad
module ParseMonad(Parser,apply,parse,char,spot,token,
star,plus,parseInt) where

import Char
import Monad

-- The type of parsers
data Parser a = Parser (String -> [(a, String)])

-- Apply a parser
apply :: Parser a -> String -> [(a, String)]
apply (Parser f) s = f s

-- Return parsed value, assuming at least one successful parse
parse :: Parser a -> String -> a
parse m s = head [x | (x,t) <- apply m s, t == ""]

Parser is a Monad
-- Parsers form a monad

-- class Monad m where
-- return :: a -> m a
-- (>>=) :: m a -> (a -> m b) -> m b

-- return replaces succ
-- (>>=) replaces (***)

instance Monad Parser where
return x = Parser (\s -> [(x,s)])
m >>= k = Parser (\s ->

[(y, u) |
(x, t) <- apply m s,
(y, u) <- apply (k x) t])

Parser is a Monad with Plus
-- Some monads have additional structure

-- class MonadPlus m where
-- mzero :: m a
-- mplus :: m a -> m a -> m a

-- mzero replaces fail
-- mplus replaces (+++)

instance MonadPlus Parser where
mzero = Parser (\s -> [])
mplus m n = Parser (\s -> apply m s ++ apply n s)

Spotting a character

-- Create a parser from a predicate function (e.g. isDigit)
spot :: (Char -> Bool) -> Parser Char
spot p = Parser f
where
f [] = []
f (c:s) | p c = [(c, s)]

| otherwise = []

-- Create a parser for a particular character
token c = spot (==c)

Parsing characters
-- Parse a single character
char :: Parser Char
char = Parser f
where
f [] = []
f (c:s) = [(c,s)]

-- Parse a character satisfying a predicate (e.g., isDigit)
spot :: (Char -> Bool) -> Parser Char
spot p = do { c <- char; guard (p c); return c }

-- Parse a given character
token :: Char -> Parser Char
token c = spot (== c)

Parsing a list
-- match zero or more occurrences
star :: Parser a -> Parser [a]
star p = plus p ‘mplus‘ return []

-- match one or more occurrences
plus :: Parser a -> Parser [a]
plus p = do { x <- p;

xs <- star p;
return (x:xs) }

Parsing an integer
-- match a natural number
parseNat :: Parser Int
parseNat = do { s <- plus (spot isDigit);

return (read s) }

-- match a negative number
parseNeg :: Parser Int
parseNeg = do { token ’-’;

n <- parseNat
return (-n) }

-- match an integer
parseInt :: Parser Int
parseInt = parseNat ‘mplus‘ parseNeg

Module ExprMonad
module ExprMonad where

import Monad
import ParseMonad

data Expr = Con Int
| Expr :+: Expr
| Expr :*: Expr
deriving (Eq,Show)

eval :: Expr -> Int
eval (Con i) = i
eval (e :+: f) = eval e + eval f
eval (e :*: f) = eval e * eval f

Parsing an expression
expr :: Parser Expr
expr = parseCon ‘mplus‘ parseAdd ‘mplus‘ parseMul
where
parseCon = do { i <- parseInt;

return (Con i) }
parseAdd = do { token ’(’;

d <- expr;
token ’+’;
e <- expr;
token ’)’;
return (d :+: e) }

parseMul = do { token ’(’;
d <- expr;
token ’*’;
e <- expr;
token ’)’;
return (d :*: e) }

Testing the parser
[comrie]wadler: ghci ExprMonad.hs
GHCi, version 6.10.4: http://www.haskell.org/ghc/ :? for help
[1 of 2] Compiling ParseMonad (ParseMonad.hs, interpreted)
[2 of 2] Compiling ExprMonad (ExprMonad.hs, interpreted)
Ok, modules loaded: ExprMonad, ParseMonad.

*ExprMonad> parse expr "(1+(2*3))"
Con 1 :+: (Con 2 :*: Con 3)

*ExprMonad> eval (parse expr "(1+(2*3))")

*ExprMonad> parse expr "((1+2)*3)"
(Con 1 :+: Con 2) :*: Con 3

*ExprMonad> eval (parse expr "((1+2)*3)")

*ExprMonad>

Part X

The monad of state

The State Monad
module StateMonad where

data State s a = State (s -> (a,s))

apply :: State s a -> s -> (a,s)
apply (State f) s = f s

instance Monad (State s) where
return x = State (\s -> (x,s))
m >>= k = State (\s ->

let (x,t) = apply m s in
let (y,u) = apply (k x) t in
(y,u))

Random numbers
module RandomState where

import StateMonad
import Random

-- data StdGen
-- next :: StdGen -> (Int, StdGen)

chooseOne :: State StdGen Int
chooseOne = State next

chooseMany :: Int -> State StdGen [Int]
chooseMany 0 = return []
chooseMany (n+1) = do {

x <- chooseOne;
xs <- chooseMany n;
return (x:xs)

}

Converting between monads
-- newStdGen :: IO StdGen

io :: State StdGen a -> IO a
io m = do {

stdgen <- newStdGen;
let (x, stdgen’) = apply m stdgen in
return x

}

Putting it all together
main :: IO ()
main = do {

xs <- io (chooseMany 5)
print xs;
ys <- io (chooseMany 5)
print ys

}

Here is a sample run:

[comrie]wadler: runghc RandomState.hs
[615674669,1843321250,709512427,880597852,433062387]
[560955837,1086298589,1424808266,959935653,780335811]
[comrie]wadler:

Part XI

Sequence

Sequence
This is part of the standard prelude.

-- sequence :: Monad m => [m a] -> m [a]
-- sequence []
-- sequence (m:ms) = do {
-- x <- m;
-- xs <- sequence ms;
-- return (x:xs)
-- }

Parser monad, match a given string
match :: String -> Parser String
match [] = return []
match (x:xs) = do {

y <- token x;
ys <- match xs;
return (y:ys)

}

is equivalent to

match’ :: String -> Parser String
match’ xs = sequence (map token xs)

State monad, choose many random numbers
chooseMany :: Int -> State StdGen [Int]
chooseMany 0 = return []
chooseMany (n+1) = do {

x <- chooseOne;
xs <- chooseMany n;
return (x:xs)

}

is equivalent to

chooseMany’ :: Int -> State StdGen [Int]
chooseMany’ n = sequence (replicate n chooseOne)

