Informatics 1 Functional Programming Lecture 9 Tuesday 27 October 2009

Proofs

Willem Heijltjes University of Edinburgh

Formal Proofs

Why do proofs?

• Safety-critical systems (autopilots, internet banking, theorem provers)

Why not QuickCheck?

- What are the 'right' tests?
- How many test cases are 'enough'?

What is a proof?

A (possible) definition:

"A formal argument showing the truth of a proposition"

A more helpful description is perhaps:

"A stepwise analysis of a proposition leading to basic statements (axioms), where each step is obviously correct, and each axiom is obviously true"

When is something 'obvious'?

This is 'socially' determined!

Pythagoras again

isTriple a b c = a*a + b*b == c*cleg1 x y = x*x - y*yleg2 x y = 2 * x * yhyp x y = x*x + y*y

 $prop_triple x y = isTriple (leg1 x y) (leg2 x y) (hyp x y)$

Unfolding definitions

isTriple (leg1 x y) (leg2 x y) (hyp x y)

isTriple (x * x - y * y) (2 * x * y) (x * x + y * y)

Unfolding definitions

isTriple (leg1 x y) (leg2 x y) (hyp x y) isTriple (x*x - y*y) (2 * x * y) (x*x + y*y) (x*x - y*y) * (x*x - y*y) + (2 * x * y) * (2 * x * y) = (x*x + y*y) * (x*x + y*y)

Arithmetic

isTriple (leg1 x y) (leg2 x y) (hyp x y)
isTriple (x*x - y*y) (2 * x * y) (x*x + y*y)
(x*x - y*y) * (x*x - y*y) + (2 * x * y) * (2 * x * y)
= (x*x + y*y) * (x*x + y*y)

Law: (a+b) * (c+d) == a*c + a*d + b*c + b*d

Arithmetic

isTriple (leg1 x y) (leg2 x y) (hyp x y)
isTriple (x*x - y*y) (2 * x * y) (x*x + y*y)
(x*x - y*y) * (x*x - y*y) + (2 * x * y) * (2 * x * y)
= (x*x + y*y) * (x*x + y*y)

Law: (a+b) * (c+d) == a*c + a*d + b*c + b*d

Induction

Suppose we want to prove something about lists.

- We don't know how long an arbitrary list is.
- But we may assume it ends somewhere. (Sometimes we don't!)
- And we know what it looks like:

A list is either empty, or has a head and a tail

Induction

How induction works:

To prove that a property p :: [Int] -> Bool holds for any list, we must show:

- p []
- if p xs then p (x:xs) (for any x :: Int)

The first is called the *base case*,

the second the *induction step*, and

the statement p xs is the *induction hypothesis*.

We want to show that for every list xs:

length xs ≥ 0

We want to show that for every list xs:

length xs ≥ 0

The base case:

length [] >= 0

We want to show that for every list xs:

length xs ≥ 0

The base case:

length [] >= 0

Unfolding definitions (length [] = 0):

0 >= 0

We want to show that for every list xs:

length xs ≥ 0

The base case:

```
length [] >= 0
```

Unfolding definitions (length [] = 0):

0 >= 0

The induction step:

```
if length xs >= 0 then length (x:xs) >= 0
```

We want to show that for every list xs:

length xs ≥ 0

The base case:

```
length [] >= 0
```

Unfolding definitions (length [] = 0):

0 >= 0

The induction step:

```
if length xs >= 0 then length (x:xs) >= 0
Unfolding definitions (length (x:xs) = 1 + length xs):
if length xs >= 0 then length xs + 1 >= 0
```

We want to show that for every list xs:

length xs ≥ 0

The base case:

```
length [] >= 0
```

Unfolding definitions (length [] = 0):

0 >= 0

The induction step:

if length xs >= 0 then length (x:xs) >= 0
Unfolding definitions (length (x:xs) = 1 + length xs):
if length xs >= 0 then length xs + 1 >= 0

Mathematical induction

Induction can be done over the natural numbers as well.

To prove a property p we need to show:

- p 0 (base case)
- if p n then p (n+1) (induction step).

The statement p n is the induction hypothesis.

Suppose we want to show:

even $x \mid \mid$ even (x+1)

Suppose we want to show:

even $x \mid \mid$ even (x+1)

Base case:

even 0 || even (0+1)

(obvious)

Suppose we want to show:

even $x \mid \mid$ even (x+1)

Base case:

even 0 || even (0+1)

(obvious)

Induction step:

```
if even x || even (x+1)
then even (x+1) || even ((x+1)+1)
```

Suppose we want to show:

even $x \mid \mid$ even (x+1)

Base case:

even 0 || even (0+1)

(obvious)

Induction step:

if even x || even (x+1) then even (x+1) || even ((x+1)+1)

Case distinction:

1. Suppose even x

```
2. Suppose even (x+1)
```

Suppose we want to show:

even $x \mid \mid$ even (x+1)

Base case:

even 0 || even (0+1)

(obvious)

Induction step:

if even $x \mid \mid$ even (x+1)then even $(x+1) \mid \mid$ even ((x+1)+1)

Case distinction:

- Suppose even x Then (obviously) even (x+2)
- 2. Suppose even (x+1)
 (We're done)