
Informatics 1
Functional Programming Lecture 9

Tuesday 27 October 2009

Proofs

Willem Heijltjes
University of Edinburgh

Formal Proofs
Why do proofs?

• Safety-critical systems
(autopilots, internet banking, theorem provers)

Why not QuickCheck?

• What are the ‘right’ tests?

• How many test cases are ‘enough’?

What is a proof?
A (possible) definition:

“A formal argument showing the truth of a proposition”

A more helpful description is perhaps:

“A stepwise analysis of a proposition leading to basic statements (axioms), where
each step is obviously correct, and each axiom is obviously true”

When is something ‘obvious’?

This is ‘socially’ determined!

Pythagoras again
isTriple a b c = a*a + b*b == c*c

leg1 x y = x*x - y*y

leg2 x y = 2 * x * y

hyp x y = x*x + y*y

prop_triple x y = isTriple (leg1 x y) (leg2 x y) (hyp x y)

Unfolding definitions
isTriple (leg1 x y) (leg2 x y) (hyp x y)

isTriple (x*x - y*y) (2 * x * y) (x*x + y*y)

Unfolding definitions
isTriple (leg1 x y) (leg2 x y) (hyp x y)

isTriple (x*x - y*y) (2 * x * y) (x*x + y*y)

(x*x - y*y) * (x*x - y*y) + (2 * x * y) * (2 * x * y)

== (x*x + y*y) * (x*x + y*y)

Arithmetic
isTriple (leg1 x y) (leg2 x y) (hyp x y)

isTriple (x*x - y*y) (2 * x * y) (x*x + y*y)

(x*x - y*y) * (x*x - y*y) + (2 * x * y) * (2 * x * y)

== (x*x + y*y) * (x*x + y*y)

Law: (a+b)*(c+d) == a*c + a*d + b*c + b*d

Arithmetic
isTriple (leg1 x y) (leg2 x y) (hyp x y)

isTriple (x*x - y*y) (2 * x * y) (x*x + y*y)

(x*x - y*y) * (x*x - y*y) + (2 * x * y) * (2 * x * y)

== (x*x + y*y) * (x*x + y*y)

Law: (a+b)*(c+d) == a*c + a*d + b*c + b*d

x*x*x*x - 2*x*x*y*y + y*y*y*y + 4*x*x*y*y

== x*x*x*x + 2*x*x*y*y + y*y*y*y

x*x*x*x + 2*x*x*y*y + y*y*y*y

== x*x*x*x + 2*x*x*y*y + y*y*y*y

Induction
Suppose we want to prove something about lists.

• We don’t know how long an arbitrary list is.

• But we may assume it ends somewhere. (Sometimes we don’t!)

• And we know what it looks like:

A list is either empty, or has a head and a tail

Induction
How induction works:

To prove that a property p :: [Int] -> Bool holds for any list, we must
show:

• p []

• if p xs then p (x:xs) (for any x :: Int)

The first is called the base case,

the second the induction step, and

the statement p xs is the induction hypothesis.

An easy example
We want to show that for every list xs:

length xs >= 0

An easy example
We want to show that for every list xs:

length xs >= 0

The base case:

length [] >= 0

An easy example
We want to show that for every list xs:

length xs >= 0

The base case:

length [] >= 0

Unfolding definitions (length [] = 0):

0 >= 0

An easy example
We want to show that for every list xs:

length xs >= 0

The base case:

length [] >= 0

Unfolding definitions (length [] = 0):

0 >= 0

The induction step:

if length xs >= 0 then length (x:xs) >= 0

An easy example
We want to show that for every list xs:

length xs >= 0

The base case:

length [] >= 0

Unfolding definitions (length [] = 0):

0 >= 0

The induction step:

if length xs >= 0 then length (x:xs) >= 0

Unfolding definitions (length (x:xs) = 1 + length xs):

if length xs >= 0 then length xs + 1 >= 0

An easy example
We want to show that for every list xs:

length xs >= 0

The base case:

length [] >= 0

Unfolding definitions (length [] = 0):

0 >= 0

The induction step:

if length xs >= 0 then length (x:xs) >= 0

Unfolding definitions (length (x:xs) = 1 + length xs):

if length xs >= 0 then length xs + 1 >= 0

Mathematical induction
Induction can be done over the natural numbers as well.

To prove a property p we need to show:

• p 0 (base case)

• if p n then p (n+1) (induction step).

The statement p n is the induction hypothesis.

Another example
Suppose we want to show:

even x || even (x+1)

Another example
Suppose we want to show:

even x || even (x+1)

Base case:

even 0 || even (0+1)

(obvious)

Another example
Suppose we want to show:

even x || even (x+1)

Base case:

even 0 || even (0+1)

(obvious)

Induction step:

if even x || even (x+1)

then even (x+1) || even ((x+1)+1)

Another example
Suppose we want to show:

even x || even (x+1)

Base case:

even 0 || even (0+1)

(obvious)

Induction step:

if even x || even (x+1)

then even (x+1) || even ((x+1)+1)

Case distinction:

1. Suppose even x

2. Suppose even (x+1)

Another example
Suppose we want to show:

even x || even (x+1)

Base case:

even 0 || even (0+1)

(obvious)

Induction step:

if even x || even (x+1)

then even (x+1) || even ((x+1)+1)

Case distinction:

1. Suppose even x

Then (obviously) even (x+2)

2. Suppose even (x+1)

(We’re done)

