
Informatics 1
Functional Programming Lectures 7 and 8
Monday 19 and Tuesday 20 October 2009

Map, filter, fold

Philip Wadler
University of Edinburgh

Required text and reading
Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Reading assignments:

Ch. 1–3 (pp. 1–52), by Fri 25 Sep 2009.
Ch. 4–5 & 7 (pp. 53–95, 115–134), Mon 5 Oct 2009.
Ch. 6 & 8 (pp. 96–114, 135–148), by Mon 12 Oct 2009.
Ch. 9–11 (pp. 152–209), Mon 19 Oct 2009.
(Class test) Mon 26 Oct 2009.
Ch. 12–14 (pp. 210–279), Mon 2 Nov 2009.
Ch. 15–16 (pp. 280–336), Mon 9 Nov 2009.
Ch. 17–20 (pp. 337–441), Mon 16 Nov 2009.
(Mock exam) Mon 23 Nov 2009.
(Last week of lectures) Mon 30 Nov 2009.

Part I

Currying

How to add two numbers
add :: Int -> Int -> Int
add x y = x + y

add 3 4
=

3 + 4
=

7

Currying
add :: Int -> (Int -> Int)
(add x) y = x + y

(add 3) 4
=

3 + 4
=

7

A function of two numbers
is the same as

a function of the first number that returns
a function of the second number.

Currying
add :: Int -> (Int -> Int)
add x = f

where
f y = x + y

(add 3) 4
=

f 4
where
f y = 3 + y

=
3 + 4

=
7

This idea is named for Haskell Curry (1900–1982).
It also appears in the work of Moses Schönfinkel (1889–1942),

and Gottlob Frege (1848–1925).

Part II

Map

Squares
*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

Ords
*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

Map
map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Squares, revisited
*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

squares :: [Int] -> [Int]
squares xs = map square xs

where
square x = x*x

Ords, revisited
*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

ords :: [Char] -> [Int]
ords xs = map ord xs

Part III

Filter

Positives
*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [x | x <- xs, x > 0]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

Digits
*Main> digits "a2c3"
"23"

digits :: [Char] -> [Int]
digits xs = [x | x <- xs, isDigit x]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

Filter
filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Positives, revisited
*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [x | x <- xs, x > 0]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

positives :: [Int] -> [Int]
positives xs = filter positive xs

where
positive x = x > 0

Digits, revisited
*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [x | x <- xs, isDigit x]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : isDigit xs

| otherwise = isDigit xs

digits :: [Char] -> [Char]
digits xs = filter isDigit xs

Part IV

Map and Filter, together

Squares of Positives
*Main> squarePositives [1,-2,3]
[1,9]

squarePositives :: [Int] -> [Int]
squarePositives xs = [x*x | x <- xs, x > 0]

squarePositives :: [Int] -> [Int]
squarePositives [] = []
squarePositives (x:xs)

| x > 0 = x*x : squarePositives xs
| otherwise = squarePositives p xs

squarePositives :: [Int] -> [Int]
squarePositives xs = map square (filter positive xs)

where
square x = x*x
positive x = x > 0

Converting Digits to Integers
*Main> digitsToInts "a2c3"
[2,3]

digitsToInts :: [Char] -> [Int]
digitsToInts xs = [digitToInt x | x <- xs, isDigit x]

digitsToInts :: [Char] -> [Int]
digitsToInts [] = []
digitsToInts (x:xs) | isDigit x = ord x : digitsToInts xs

| otherwise = digitsToInts p xs

digitsToInts :: [Char] -> [Int]
digitsToInts xs = map ord (filter isDigit xs)

Part V

Fold

Sum
*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

Product
*Main> product [1,2,3,4]
24

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

Concatenate
*Main> concat [[1,2,3],[4,5]]
[1,2,3,4,5]

*Main> concat ["con","cat","en","ate"]
"concatenate"

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

Foldr
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

Sum, revisited
*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum :: [Int] -> Int
sum xs = foldr add 0 xs

where
add x y = x + y

How sum works
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

sum :: [Int] -> Int
sum xs = foldr add 0 xs

where
add x y = x + y

sum [1,2,3,4]
=

foldr add 0 [1,2,3,4]
=

add 1 (add 2 (add 3 (add 4 0)))
=

1 + (2 + (3 + (4 + 0)))
=

10

Putting currying to work
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

sum :: [Int] -> Int
sum xs = foldr add 0 xs

where
add x y = x + y

is equivalent to

foldr :: (a -> a -> a) -> a -> ([a] -> a)
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

sum :: [Int] -> Int
sum = foldr add 0

where
add x y = x + y

Compare and contrast
sum :: [Int] -> Int
sum xs = foldr add 0 xs

where
add x y = x + y

sum [1,2,3,4]
=

foldr add 0 [1,2,3,4]

sum :: [Int] -> Int
sum = foldr add 0

where
add x y = x + y

sum [1,2,3,4]
=

foldr add 0 [1,2,3,4]

Sum, Product, Concat
sum :: [Int] -> Int
sum = foldr add 0

where
add x y = x + y

product :: [Int] -> Int
product = foldr times 1

where
times x y = x * y

concat :: [[a]] -> [a]
concat = foldr append []

where
append xs ys = xs ++ ys

Part VI

Map, Filter, and Fold
All together now!

Sum of Squares of Positives
*Main> f [1,-2,3]
10

f :: [Int] -> [Int]
f xs = sum [x*x | x <- xs, x > 0]

f :: [Int] -> [Int]
f [] = []
f (x:xs)

| x > 0 = (x*x) + f xs
| otherwise = f xs

f :: [Int] -> [Int]
f xs = foldr add 0 (map square (filter positive xs))

where
add x y = x + y
square x = x * x
positive x = x > 0

Part VII

Lambda expressions

A failed attempt to simplify
f :: [Int] -> [Int]
f xs = foldr add 0 (map square (filter positive xs))

where
add x y = x + y
square x = x * y
positive x = x > 0

The above cannot be simplified to the following:

f :: [Int] -> [Int]
f xs = foldr (x + y) 0 (map (x * x) (filter (x > 0) xs))

A successful attempt to simplify
f :: [Int] -> [Int]
f xs = foldr add 0 (map square (filter positive xs))

where
add x y = x + y
square x = x * x
positive x = x > 0

The above can be simplified to the following:

f :: [Int] -> [Int]
f xs = foldr (\x -> \y -> x + y) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

Lambda calculus
f :: [Int] -> [Int]
f xs = foldr (\x -> \y -> x + y) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

The character \ stands for λ, the Greek letter lambda.

Logicians write

\x -> x > 0 as λx. x > 0

\x -> x * x as λx. x× x
\x -> \y -> x + y as λx. λy. x+ y.

Lambda calculus is due to the logician Alonzo Church (1903–1995).

Evaluating lambda expressions
(\x -> x > 0) 3

=
3 > 0

=
True

(\x -> x * x) 3
=

3 * 3
=

9

(\x -> \y -> x + y) 3 4
=

(\y -> 3 + y) 4
=

3 + 4
=

7

Part VIII

Sections

Sections
(> 0) is shortand for (\x -> x > 0)

(2 *) is shortand for (\x -> 2 * x)

(+ 1) is shortand for (\x -> x + 1)

(2 ˆ) is shortand for (\x -> 2 ˆ x)

(ˆ 2) is shortand for (\x -> x ˆ 2)

(+) is shorthand for (\x -> \y -> x + y)

(*) is shorthand for (\x -> \y -> x * y)

(++) is shorthand for (\xs -> \ys -> xs ++ ys)

Sections
f :: [Int] -> [Int]
f xs = foldr (\x -> \y -> x + y) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

f :: [Int] -> [Int]
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))

Sections
sum :: [Int] -> Int
sum = foldr (+) 0

product :: [Int] -> Int
product = foldr (*) 1

concat :: [[a]] -> [a]
concat = foldr (++) []

Lambda the Ultimate!

Part IX

Composition

Composition
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

Evaluation composition
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

sqr :: Int -> Int
sqr x = x * x

pos :: Int -> Bool
pos x = x > 0

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True

Compare and contrast

possqr :: Int -> Bool
possqr x = pos (sqr x)

sqrpos 3
=

pos (sqr 3)
=

pos 9
=

True

possqr :: Int -> Bool
possqr = pos . sqr

possqr 3
=

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True

Thinking functionally
f :: [Int] -> [Int]
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))

f :: [Int] -> [Int]
f = foldr (+) 0 . map (ˆ 2) . filter (> 0)

Part X

Composition

Composition
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

Evaluation composition
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

sqr :: Int -> Int
sqr x = x * x

pos :: Int -> Bool
pos x = x > 0

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True

Compare and contrast

possqr :: Int -> Bool
possqr x = pos (sqr x)

sqrpos 3
=

pos (sqr 3)
=

pos 9
=

True

possqr :: Int -> Bool
possqr = pos . sqr

possqr 3
=

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True

Thinking functionally
f :: [Int] -> [Int]
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))

f :: [Int] -> [Int]
f = foldr (+) 0 . map (ˆ 2) . filter (> 0)

Part XI

Variables and binding

Variables
x = 2
y = x+1
z = x+y*y

*Main> z
11

Variables—binding
x = 2
y = x+1
z = x+y*y

*Main> z
11

Binding occurrence
Bound occurrence
Scope of binding

Variables—binding
x = 2
y = x+1
z = x+y*y

*Main> z
11

Binding occurrence
Bound occurrence
Scope of binding

Variables—binding
x = 2
y = x+1
z = x+y*y

*Main> z
11

Binding occurrence
Bound occurrence
Scope of binding

Variables—renaming
xavier = 2
yolanda = xavier+1
zeuss = xavier+yolanda*yolanda

*Main> zeuss
11

Part XII

Functions and binding

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

There are two unrelated uses of x!

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—binding
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions—formal and actual parameters
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions—formal and actual parameters
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions—formal and actual parameters
f x = g x (x+1)
g x y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions—renaming
fred xavier = george xavier (xavier+1)
george xerox yolanda = xerox+yolanda*yolanda

*Main> fred 2
11

Different uses of x renamed to xavier and xerox.

Part XIII

Variables in a where clause

Variables in a where clause
f x = z

where
y = x+1
z = x+y*y

*Main> f 2
11

Variables in a where clause—binding
f x = z

where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—binding
f x = z

where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—binding
f x = z

where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—binding
f x = z

where
y = x+1
z = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variables in a where clause—hole in scope
f x = z

where
y = x+1
z = x+y*y

y = 5

*Main> y
5

Binding occurrence
Bound occurrence
Scope of binding

Part XIV

Functions in a where clause

Functions in a where clause
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Functions in a where clause—binding
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Variable x is still in scope within g!

Functions in a where clause—binding
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—binding
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—binding
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—hole in scope
f x = g (x+1)

where
g y = x+y*y

g z = z*z*z

*Main> g 2
8

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—pathological case
f x = f (x+1)

where
f y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—pathological case
f x = f (x+1)

where
f y = x+y*y

*Main> f 2
11

Binding occurrence
Bound occurrence
Scope of binding

Functions in a where clause—formals and actuals
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Functions in a where clause—formals and actuals
f x = g (x+1)

where
g y = x+y*y

*Main> f 2
11

Formal parameter
Actual parameter

Part XV

Comprehensions

Comprehensions
squarePositives :: [Int] -> [Int]
squarePositives xs = [x*x | x <- xs, x > 0]

*Main> squarePositives [1,-2,3]
[1,9]

Comprehensions—binding
squarePositives :: [Int] -> [Int]
squarePositives xs = [x*x | x <- xs, x > 0]

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Comprehensions—binding
squarePositives :: [Int] -> [Int]
squarePositives xs = [x*x | x <- xs, x > 0]

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Comprehensions—pathological case
squarePositives :: [Int] -> [Int]
squarePositives x = [x*x | x <- x, x > 0]

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding – Note hole in scope!

Squares of Positives—pathological case
squarePositives :: [Int] -> [Int]
squarePositives x = [x*x | x <- x, x > 0]

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Part XVI

Higher order functions

Higher-order functions
squarePositives :: [Int] -> [Int]
squarePositives xs = map square (filter positive xs)

where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Higher order functions—binding
squarePositives xs = map square (filter positive xs)

where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
squarePositives xs = map square (filter positive xs)

where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
squarePositives xs = map square (filter positive xs)

where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
squarePositives xs = map square (filter positive xs)

where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
squarePositives xs = map square (filter positive xs)

where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
squarePositives xs = map square (filter positive xs)

where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence
Bound occurrence
Scope of binding

Higher-order functions—binding
squarePositives xs = map square (filter positive xs)

where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence—not shown (in standard prelude)
Bound occurrence
Scope of binding

Higher-order functions—binding
squarePositives xs = map square (filter positive xs)

where
square x = x*x
positive x = x > 0

*Main> squarePositives [1,-2,3]
[1,9]

Binding occurrence—not shown (in standard prelude)
Bound occurrence
Scope of binding

Part XVII

Lambda expressions

A wrong attempt to simplify
squarePositives :: [Int] -> [Int]
squarePositives xs = map (x * x) (filter (x > 0) xs)

This makes no sense—no binding occurrence of variable!

Lambda expressions
squarePositives :: [Int] -> [Int]
squarePositives xs =

map (\x -> x * x) (filter (\x -> x > 0) xs)

The character \ stands for λ, the Greek letter lambda.

Logicians write

(\x -> x * x) as (λx. x× x)
(\x -> x > 0) as (λx. x > 0)

Lambda expressions—binding
squarePositives :: [Int] -> [Int]
squarePositives xs =

map (\x -> x*x) (filter (\x -> x > 0) xs)

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—binding
squarePositives :: [Int] -> [Int]
squarePositives xs =

map (\x -> x*x) (filter (\x -> x > 0) xs)

Binding occurrence
Bound occurrence
Scope of binding

Part XVIII

Lambda expressions and binding constructs

Lambda expressions and binding constructs
A variable binding can be rewritten using a lambda expression and an application:

(N where x = M)

= (λx.N)M

A function binding can be written using an application on the left or a lambda
expression on the right:

(M where f x = N)

= (M where f = λx.N)

Lambda expressions and binding constructs
f 2
where
f x = x+y*y

where
y = x+1

=
f 2
where
f = \x -> (x+y*y where y = x+1)

=
f 2
where
f = \x -> ((\y -> x+y*y) (x+1))

=
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Evaluating lambda expressions
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

=
(\x -> ((\y -> x+y*y) (x+1))) 2

=
(\y -> 2+y*y) (2+1)

=
(\y -> 2+y*y) 3

=
2+3*3

=
11

Lambda expressions—binding
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—binding
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—binding
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Binding occurrence
Bound occurrence
Scope of binding

Lambda expressions—formals and actuals
(\f -> f 2) (\x -> ((\y -> x+y*y) (x+1)))

Formal parameter
Actual parameter

Lambda expressions—formals and actuals
(\x -> ((\y -> x+y*y) (x+1))) 2

Formal parameter
Actual parameter

Lambda expressions—formals and actuals
(\y -> 2+y*y) (2+1)

Formal parameter
Actual parameter

Part XIX

List comprehensions with two qualifiers

List comprehension with two qualifiers
f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

List comprehension with two qualifiers—binding
f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

List comprehension with two qualifiers—binding
f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

List comprehension with two qualifiers—binding
f n = [(i,j) | i <- [1..n], j <- [i..n]]

*Main> f 3
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Binding occurrence
Bound occurrence
Scope of binding

Evaluating a list comprehension
[(i,j) | i <- [1..3], j <- [i..3]]

=
[(1,j) | j <- [1..3]] ++
[(2,j) | j <- [2..3]] ++
[(3,j) | j <- [3..3]]

=
[(1,1),(1,2),(1,3)] ++
[(2,2),(2,3)] ++
[(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Another example
[(i,j) | i <- [1..3], j <- [1..3], i <= j]

=
[(1,j) | j <- [1..3], 1 <= j] ++
[(2,j) | j <- [1..3], 2 <= j] ++
[(3,j) | j <- [1..3], 3 <= j]

=
[(1,1)|1<=1] ++ [(1,2)|1<=2] ++ [(1,3)|1<=3] ++
[(2,1)|2<=1] ++ [(2,2)|2<=2] ++ [(2,3)|2<=3] ++
[(3,1)|3<=1] ++ [(3,2)|3<=2] ++ [(3,3)|3<=3]

=
[(1,1)] ++ [(1,2)] ++ [(1,3)] ++
[] ++ [(2,2)] ++ [(2,3)] ++
[] ++ [] ++ [(3,3)]

=
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Defining list comprehensions

[e | x← l, q] = concat (map (λx. [e | q]) l)

[e | b, q] = if b then [e | q] else []

[e | x← l] = map (λx. e) l)

[e | b] = if b then [e] else []

Example 1
[x*x | x <- xs]

=
map (\x -> x*x) xs

Example 2
[x*x | x <- xs, x > 0]

=
concat
(map

(\x -> [x*x | x > 0])
xs)

=
concat
(map

(\x -> if x > 0 then [x*x] else [])
xs)

Example 3
[(i,j) | i <- [1..n], j <- [i..n]]

=
concat
(map

(\i -> [(i,j) | j <- [i..n]])
[1..n])

=
concat
(map

(\i -> map (\j -> (i,j)) [i..n])
[1..n])

Example 4
[(i,j) | i <- [1..n], j <- [1..n], i < j]

=
concat
(map

(\i -> [(i,j) | j <- [1..n], i < j])
[1..n])

=
concat
(map

(\i ->
concat
(map (\j -> [(i,j) | i < j]) [1..n]))

[1..n])
=

concat
(map

(\i ->
concat
(map

(\j -> if i < j then [(i,j)] else [])
[1..n]))

[1..n])

