
Informatics 1
Functional Programming Lectures 3 and 4

Monday 5 and Tuesday 6 October 2009

Lists and Recursion

Philip Wadler
University of Edinburgh

Tutorials
Tutorials start this week!

Tuesday/Wednesday Computation and Logic

Thursday/Friday Functional Programming

Do the tutorial work before the tutorial!

(You do not do the tutorial work during the tutorial!)

Bring a printout of your work to the tutorial!

Labs and Lab week
Drop-in laboratories

Computer Lab West, Appleton Tower, level 5

Mondays 3–5pm

Tuesdays 2–5pm

Wednesdays 2–5pm

Thursdays 2–5pm

Fridays 3–5pm

Did you do your lab week exercise?

Required text and reading
Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Reading assignment:

Thompson, Chapters 1–3 (pp. 1–52)
by Friday 25 September 2009.
Thompson, Chapters 4–5 & 7 (pp. 53–95, 115–134)
by Monday 5 October 2009.
Thompson, Chapters 6 & 8 (pp. 96–114, 135–148)
by Monday 12 October 2009.

List comprehensions — Generators
Prelude> [x*x | x <- [1,2,3]]
[1,4,9]

Prelude> [toLower c | c <- "Hello, World!"]
"hello, world!"

Prelude> [(x, even x) | x <- [1,2,3]]
[(1,False),(2,True),(3,False)]

x <- [1,2,3] is called a generator

<- is pronounced drawn from

List comprehensions — Guards
Prelude> [x | x <- [1,2,3], odd x]
[1,3]

Prelude> [x*x | x <- [1,2,3], odd x]
[1,9]

Prelude> [x | x <- [42,-5,24,0,-3], x > 0]
[42,24]

Prelude> [toLower c | c <- "Hello, World!", isAlpha c]
"helloworld"

even x is called a guard

Sum, Product
Prelude> sum [1,2,3]
6

Prelude> sum []
0

Prelude> sum [x*x | x <- [1,2,3], odd x]
10

Prelude> product [1,2,3,4]
24

Prelude> product []
1

Prelude> let factorial n = product [1..n]
Prelude> factorial 4
24

Part I

Mapping: Square every element of a list
(comprehension)

How comprehensions work—squares
squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

squares [1,2,3]

How comprehensions work—squares
squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

squares [1,2,3]
= {xs = [1,2,3]}

[x*x | x <- [1,2,3]]

How comprehensions work—squares
squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

squares [1,2,3]
=

[x*x | x <- [1,2,3]]
= {x = 1}, {x = 2}, {x = 3}

[1*1]++[2*2]++[3*3]

How comprehensions work—squares
squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

squares [1,2,3]
=

[x*x | x <- [1,2,3]]
=

[1*1]++[2*2]++[3*3]
=

[1]++[4]++[9]

How comprehensions work—squares
squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

squares [1,2,3]
=

[x*x | x <- [1,2,3]]
=

[1*1]++[2*2]++[3*3]
=

[1]++[4]++[9]
=

[1,4,9]

How comprehensions work—squares
squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

squares [1,2,3]
=

[x*x | x <- [1,2,3]]
=

[1*1]++[2*2]++[3*3]
=

[1]++[4]++[9]
=

[1,4,9]

Part II

Filtering: Select odd elements from a list
(comprehension)

How comprehensions work—odds
odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

odds [1,2,3]

How comprehensions work—odds
odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

odds [1,2,3]
= {xs = [1,2,3]}

[x | x <- [1,2,3], odd x]

How comprehensions work—odds
odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

odds [1,2,3]
=

[x | x <- [1,2,3], odd x]
= {x = 1}, {x = 2}, {x = 3}

[1 | odd 1]++[2 | odd 2]++[3 | odd 3]

How comprehensions work—odds
odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

odds [1,2,3]
=

[x | x <- [1,2,3], odd x]
=

[1 | odd 1]++[2 | odd 2]++[3 | odd 3]
=

[1 | True]++[2 | False]++[3 | True]

How comprehensions work—odds
odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

odds [1,2,3]
=

[x | x <- [1,2,3], odd x]
=

[1 | odd 1]++[2 | odd 2]++[3 | odd 3]
=

[1 | True]++[2 | False]++[3 | True]
=

[1]++[]++[3]

How comprehensions work—odds
odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

odds [1,2,3]
=

[x | x <- [1,2,3], odd x]
=

[1 | odd 1]++[2 | odd 2]++[3 | odd 3]
=

[1 | True]++[2 | False]++[3 | True]
=

[1]++[]++[3]
=

[1,3]

How comprehensions work—odds
odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

odds [1,2,3]
=

[x | x <- [1,2,3], odd x]
=

[1 | odd 1]++[2 | odd 2]++[3 | odd 3]
=

[1 | True]++[2 | False]++[3 | True]
=

[1]++[]++[3]
=

[1,3]

Part III

Putting it all together:
Sum of the squares of the odd numbers in a list

(comprehension)

Two styles of definition
Composition

f :: [Integer] -> Integer
f xs = sum (squares (odds xs))

Comprehension

fCom :: [Integer] -> Integer
fCom xs = sum [x*x | x <- xs, odd x]

How composition works—f
f :: [Integer] -> [Integer]
f xs = sum (squares (odds xs))

f [1,2,3]

How composition works—f
f :: [Integer] -> [Integer]
f xs = sum (squares (odds xs))

f [1,2,3]
= {xs = [1,2,3]}

sum (squares (odds [1,2,3]))

How composition works—f
f :: [Integer] -> [Integer]
f xs = sum (squares (odds xs))

f [1,2,3]
=

sum (squares (odds [1,2,3]))
=

sum (squares [1,3])

How composition works—f
f :: [Integer] -> [Integer]
f xs = sum (squares (odds xs))

f [1,2,3]
=

sum (squares (odds [1,2,3]))
=

sum (squares [1,3])
=

sum [1,9]

How composition works—f
f :: [Integer] -> [Integer]
f xs = sum (squares (odds xs))

f [1,2,3]
=

sum (squares (odds [1,2,3]))
=

sum (squares [1,3])
=

sum [1,9]
=

10

How composition works—f
f :: [Integer] -> [Integer]
f xs = sum (squares (odds xs))

f [1,2,3]
=

sum (squares (odds [1,2,3]))
=

sum (squares [1,3])
=

sum [1,9]
=

10

How comprehensions work—fCom
fCom :: [Integer] -> [Integer]
fCom xs = sum [x*x | x <- xs, odd x]

fCom [1,2,3]

How comprehensions work—fCom
fCom :: [Integer] -> [Integer]
fCom xs = sum [x*x | x <- xs, odd x]

fCom [1,2,3]
= {xs = [1,2,3]}

sum [x*x | x <- [1,2,3], odd x]

How comprehensions work—fCom
fCom :: [Integer] -> [Integer]
fCom xs = sum [x*x | x <- xs, odd x]

fCom [1,2,3]
=

sum [x*x | x <- [1,2,3], odd x]
= {x = 1}, {x = 2}, {x = 3}

sum ([1*1 |odd 1]++[2*2 | odd 2]++[3*3 | odd 3])

How comprehensions work—fCom
fCom :: [Integer] -> [Integer]
fCom xs = sum [x*x | x <- xs, odd x]

fCom [1,2,3]
=

sum [x*x | x <- [1,2,3], odd x]
=

sum ([1*1 | odd 1]++[2*2 | odd 2]++[3*3 | odd 3])
=

sum ([1 |True]++[4 | False]++[9 | True])

How comprehensions work—fCom
fCom :: [Integer] -> [Integer]
fCom xs = sum [x*x | x <- xs, odd x]

fCom [1,2,3]
=

sum [x*x | x <- [1,2,3], odd x]
=

sum ([1*1 | odd 1]++[2*2 | odd 2]++[3*3 | odd 3])
=

sum ([1 | True]++[4 | False]++[9 | True])
=

sum ([1]++[]++[9])

How comprehensions work—fCom
fCom :: [Integer] -> [Integer]
fCom xs = sum [x*x | x <- xs, odd x]

fCom [1,2,3]
=

sum [x*x | x <- [1,2,3], odd x]
=

sum ([1*1 | odd 1]++[2*2 | odd 2]++[3*3 | odd 3])
=

sum ([1 | True]++[4 | False]++[9 | True])
=

sum ([1]++[]++[9])
=

sum [1,9]

How comprehensions work—fCom
fCom :: [Integer] -> [Integer]
fCom xs = sum [x*x | x <- xs, odd x]

fCom [1,2,3]
=

sum [x*x | x <- [1,2,3], odd x]
=

sum ([1*1 | odd 1]++[2*2 | odd 2]++[3*3 | odd 3])
=

sum ([1 | True]++[4 | False]++[9 | True])
=

sum ([1]++[]++[9])
=

sum [1,9]
=

10

How comprehensions work—fCom
fCom :: [Integer] -> [Integer]
fCom xs = sum [x*x | x <- xs, odd x]

fCom [1,2,3]
=

sum [x*x | x <- [1,2,3], odd x]
=

sum ([1*1 | odd 1]++[2*2 | odd 2]++[3*3 | odd 3])
=

sum ([1 | True]++[4 | False]++[9 | True])
=

sum ([1]++[]++[9])
=

sum [1,9]
=

10

QuickCheck, a program
-- lect03.hs

import Test.QuickCheck

squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

f :: [Integer] -> [Integer]
f xs = sum (squares (odds xs))

fCom :: [Integer] -> [Integer]
fCom xs = sum [x*x | x <- xs, odd x]

prop_f :: [Integer] -> Bool
prop_f xs = f xs == fCom xs

QuickCheck, running the program
[culross]wadler: ghci lect03.hs
GHCi, version 6.8.3: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
[1 of 1] Compiling Main (lect03.hs, interpreted)

*Main> quickCheck prop_f
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
Loading package QuickCheck-2.1 ... linking ... done.
+++ OK, passed 100 tests.

*Main>

Part IV

Lists and Recursion

Cons and append
Cons takes an element and a list.
Append takes two lists.

(:) :: a -> [a] -> [a]
(++) :: [a] -> [a] -> [a]

1 : [2,3] = [1,2,3]
[1] ++ [2,3] = [1,2,3]
[1,2] ++ [3] = [1,2,3]
’l’ : "ist" = "list"
"l" ++ "ist" = "list"
"li" ++ "st" = "list"

[1] : [2,3] -- type error!
1 ++ [2,3] -- type error!
[1,2] ++ 3 -- type error!
"l" : "ist" -- type error!
’l’ ++ "ist" -- type error!

(:) is pronounced cons, for construct
(++) is pronounced append

Lists
Every list can be written using only (:) and [].

[1,2,3] = 1 : (2 : (3 : []))

"list" = [’l’,’i’,’s’,’t’]
= ’l’ : (’i’ : (’s’ : (’t’ : [])))

A recursive definition: A list is either

• null, written [], or

• constructed, written x:xs, with head x (an element), and tail xs (a list).

A list of numbers
Prelude> null [1,2,3]
False
Prelude> head [1,2,3]
1
Prelude> tail [1,2,3]
[2,3]
Prelude> null [2,3]
False
Prelude> head [2,3]
2
Prelude> tail [2,3]
[3]
Prelude> null [3]
False
Prelude> head [3]
3
Prelude> tail [3]
[]
Prelude> null []
True

Part V

Mapping: Square every element of a list
(recursion)

Two styles of definition—squares
Comprehension

squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

Recursion

squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

Pattern matching and conditionals
Pattern matching

squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

Conditionals with binding

squaresCond :: [Integer] -> [Integer]
squaresCond ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
x*x : squaresCond xs

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])) }

1*1 : squaresRec (2 : (3 : []))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
= { x = 2, xs = (3 : []) }

1*1 : (2*2 : squaresRec (3 : []))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
= { x = 3, xs = [] }

1*1 : (2*2 : (3*3 : squaresRec []))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))
=

[1,4,9]

How recursion works—squaresRec
squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

squaresRec [1,2,3]
=

squaresRec (1 : (2 : (3 : [])))
=

1*1 : squaresRec (2 : (3 : []))
=

1*1 : (2*2 : squaresRec (3 : []))
=

1*1 : (2*2 : (3*3 : squaresRec []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))
=

[1,4,9]

QuickCheck, a program
-- lect03.hs

import Test.QuickCheck

squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

squaresRec :: [Integer] -> [Integer]
squaresRec [] = []
squaresRec (x:xs) = x*x : squaresRec xs

prop_squares :: [Integer] -> Bool
prop_squares xs = squares xs == squaresRec xs

QuickCheck, running a program
[culross]wadler: ghci lect03.hs
GHCi, version 6.8.3: http://www.haskell.org/ghc/ :? for help
Loading package base ... linking ... done.
[1 of 1] Compiling Main (lect03.hs, interpreted)

*Main> quickCheck prop_squares
Loading package old-locale-1.0.0.0 ... linking ... done.
Loading package old-time-1.0.0.0 ... linking ... done.
Loading package random-1.0.0.0 ... linking ... done.
Loading package mtl-1.1.0.1 ... linking ... done.
Loading package QuickCheck-2.1 ... linking ... done.
+++ OK, passed 100 tests.

*Main>

Part VI

Filtering: Select odd elements from a list
(recursion)

Two styles of definition—odds
Comprehension

odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

Recursion

oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

Pattern matching and conditionals
Pattern matching with guards

oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

Conditionals with binding
oddsCond :: [Integer] -> [Integer]
oddsCond ws =

if null ws then
[]

else
let
x = head ws
xs = tail ws

in
if odd x then

x : oddsCond xs
else

oddsCond xs

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])), odd 1 = True }

1 : oddsRec (2 : (3 : []))

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
= { x = 2, xs = (3 : []), odd 2 = False }

1 : oddsRec (3 : [])

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
= { x = 3, xs = [], odd 3 = True }

1 : (3 : oddsRec [])

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
=

1 : (3 : oddsRec [])
=

1 : (3 : [])

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
=

1 : (3 : oddsRec [])
=

1 : (3 : [])
=

[1,3]

How recursion works—oddsRec
oddsRec :: [Integer] -> [Integer]
oddsRec [] = []
oddsRec (x:xs) | odd x = x : oddsRec xs

| otherwise = oddsRec xs

oddsRec [1,2,3]
=

oddsRec (1 : (2 : (3 : [])))
=

1 : oddsRec (2 : (3 : []))
=

1 : oddsRec (3 : [])
=

1 : (3 : oddsRec [])
=

1 : (3 : [])
=

[1,3]

Part VII

Accumulation: Sum a list

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
= {x = 1, xs = (2 : (3 : []))}

1 + sum (2 : (3 : []))

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
= {x = 2, xs = (3 : [])}

1 + (2 + sum (3 : []))

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
= {x = 3, xs = []}

1 + (2 + (3 + sum []))

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))
=

6

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))
=

6

Sum
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2,3]
=

sum (1 : (2 : (3 : [])))
=

1 + sum (2 : (3 : []))
=

1 + (2 + sum (3 : []))
=

1 + (2 + (3 + sum []))
=

1 + (2 + (3 + 0))
=

6

Product
product :: [Integer] -> Integer
product [] = 1
product (x:xs) = x * product xs

product [1,2,3]
=

product (1 : (2 : (3 : [])))
=

1 * product (2 : (3 : []))
=

1 * (2 * product (3 : []))
=

1 * (2 * (3 * product []))
=

1 * (2 * (3 * 1))
=

6

Part VIII

Putting it all together:
Sum of the squares of the odd numbers in a list

(recursion)

Three styles of definition
Composition

f :: [Integer] -> Integer
f xs = sum (squares (odds xs))

Comprehension

fCom :: [Integer] -> Integer
fCom xs = sum [x*x | x <- xs, odd x]

Recursion

fRec :: [Integer] -> Integer
fRec [] = 0
fRec (x:xs) | odd x = x*x + fRec xs

| otherwise = fRec xs

How recursion works—fRec
fRec :: [Integer] -> [Integer]
fRec [] = []
fRec (x:xs) | odd x = x*x + fRec xs

| otherwise = fRec xs

fRec [1,2,3]

How recursion works—fRec
fRec :: [Integer] -> [Integer]
fRec [] = []
fRec (x:xs) | odd x = x*x + fRec xs

| otherwise = fRec xs

fRec [1,2,3]
=

fRec (1 : (2 : (3 : [])))

How recursion works—fRec
fRec :: [Integer] -> [Integer]
fRec [] = 0
fRec (x:xs) | odd x = x*x + fRec xs

| otherwise = fRec xs

fRec [1,2,3]
=

fRec (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])), odd 1 = True }

1*1 + fRec (2 : (3 : []))

How recursion works—fRec
fRec :: [Integer] -> [Integer]
fRec [] = 0
fRec (x:xs) | odd x = x*x + fRec xs

| otherwise = fRec xs

fRec [1,2,3]
=

fRec (1 : (2 : (3 : [])))
=

1*1 + fRec (2 : (3 : []))
= { x = 2, xs = (3 : []), odd 2 = False }

1*1 + fRec (3 : [])

How recursion works—fRec
fRec :: [Integer] -> [Integer]
fRec [] = 0
fRec (x:xs) | odd x = x*x + fRec xs

| otherwise = fRec xs

fRec [1,2,3]
=

fRec (1 : (2 : (3 : [])))
=

1*1 + fRec (2 : (3 : []))
=

1*1 + fRec (3 : [])
= { x = 3, xs = [], odd 3 = True }

1*1 + (3*3 : fRec [])

How recursion works—fRec
fRec :: [Integer] -> [Integer]
fRec [] = 0
fRec (x:xs) | odd x = x*x + fRec xs

| otherwise = fRec xs

fRec [1,2,3]
=

fRec (1 : (2 : (3 : [])))
=

1*1 + fRec (2 : (3 : []))
=

1*1 + fRec (3 : [])
=

1*1 + (3*3 + fRec [])
=

1*1 + (3*3 + 0)

How recursion works—fRec
fRec :: [Integer] -> [Integer]
fRec [] = 0
fRec (x:xs) | odd x = x*x + fRec xs

| otherwise = fRec xs

fRec [1,2,3]
=

fRec (1 : (2 : (3 : [])))
=

1*1 + fRec (2 : (3 : []))
=

1*1 + fRec (3 : [])
=

1*1 + (3*3 + fRec [])
=

1*1 + (3*3 + 0)
=

1 + (9 + 0)

How recursion works—fRec
fRec :: [Integer] -> [Integer]
fRec [] = 0
fRec (x:xs) | odd x = x*x + fRec xs

| otherwise = fRec xs

fRec [1,2,3]
=

fRec (1 : (2 : (3 : [])))
=

1*1 + fRec (2 : (3 : []))
=

1*1 + fRec (3 : [])
=

1*1 + (3*3 + fRec [])
=

1*1 + (3*3 + 0)
=

1 + (9 + 0)
=

10

How recursion works—fRec
fRec :: [Integer] -> [Integer]
fRec [] = 0
fRec (x:xs) | odd x = x*x + fRec xs

| otherwise = fRec xs

fRec [1,2,3]
=

fRec (1 : (2 : (3 : [])))
=

1*1 + fRec (2 : (3 : []))
=

1*1 + fRec (3 : [])
=

1*1 + (3*3 + fRec [])
=

1*1 + (3*3 + 0)
=

1 + (9 + 0)
=

10

