Turtle Graphics and L-systems

Informatics 1 — Functional Programming: Tutorial 7

Heijltjes, Wadler

Due: The tutorial of week 9 (20/21 Nov.)
Reading assignment: Chapters 15-17 (pp. 280—382)

Please attempt the entire worksheet in advance of the tutorial, and bring with you all
work, including (if a computer is involved) printouts of code and test results. Tutorials
cannot function properly unless you do the work in advance.

You may work with others, but you must understand the work; you can’t phone a friend
during the exam.

Assessment is formative, meaning that marks from coursework do not contribute to the
final mark. But coursework is not optional. If you do not do the coursework you are
unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you cannot attend.

Turtle graphics

Turtle graphics is a simple way of making line drawings.! The turtle has a given location on the
canvas and is facing in a given direction. A command describes a sequence of actions to be undertaken
by a turtle, including moving forward a given distance or turning through a given angle.

Turtle commands can be represented in Haskell using an algebraic data type:

type Distance = Float
type Angle = Float
data Command = Go Distance
| Turn Angle
| Sit
| Command :#: Command

The last line uses Haskell’s facility to declare an infix operator as a constructor of an algebraic type.
Such operators must always begin with a colon, just as operator names must always begin with an
upper case letter. In this case, we use the operator :#: to join two commands.

Thus, a command has one of four forms:

e Go d, where d is a distance — move the turtle the given distance in the direction it is facing.
(Note: distances are not expected to be negative.)

e Turn a, where a is an angle — turn the turtle anticlockwise through the given angle.

IThis exercise in based on a similar exercise used at Imperial College. See http://el.media.mit.edu/
logo-foundation/logo/turtle.html for more on turtle graphics.

Turn 120

“

Go 30

Go 30

4

Turn 120

Start

Figure 1: Drawing a triangle with turtle commands

e Sit — do nothing: leaves the turtle’s position and direction unchanged.

e p :#: g, where p and q are themselves commands — execute the two given commands in
sequence.

For instance, to draw an equilateral triangle with sides of thirty units, we need to order the turtle
to move forward three times, turning 120° between moves:

Go 30 :#: Turn 120 :#: Go 30 :#: Turn 120 :#: Go 30

(See Figure 1.)

Viewing paths
You can view a turtle’s path by typing
*Main> display path
where path is an expression of type Command. For example,
*Main> display (Go 30 :#: Turn 120 :#: Go 30 :#: Turn 120 :#: Go 30)

draws the triangle described above.

Equivalences

Note that :#: is an associative operator with identity Sit. So we have:

p :#: Sit = p
Sit :#: p = p
p :#: (q :#: 1) (p :#: @ :#:r

We can omit parentheses in expressions with :#: because, wherever they are placed, the meaning
remains the same. In this assignment, when we say that two commands are equivalent we mean that
they are the same according to the equalities listed above.

However, to evaluate an expression Haskell has to place parentheses; if you ask it to show a command,
it will also show where it has placed them:

*Main> Sit :#: Sit :#: Sit
Sit :#: (Sit :#: Sit)

Exercises

1. In this first exercise we will explore the equivalence of turtle commands and convert them
into lists and back.

(a)

()

Write a function
split :: Command -> [Command]

that converts a command to a list of individual commands containing no :#: or Sit
elements. For example,

*Main> split (Go 3 :#: Turn 4 :#: Go 7)
[Go 3, Turn 4, Go 7]

Note that two commands are equivalent if split returns the same result for both.

*Main> split ((Go 3 :#: Turn 4) :#: (Sit :#: Go 7))
[Go 3, Turn 4, Go 7]
*Main> split (((Sit :#: Go 3) :#: Turn 4) :#: Go 7)
[Go 3, Turn 4, Go 7]

Write a function
join :: [Command] -> Command

that converts a list of commands into a single command by joining the elements together.
For example,

*Main> join [Go 3, Turn 4, Go 7]
Go 3 :#: Turn 4 :#: Go 7 :#: Sit
As in all our examples, the result can be any command equivalent to the given command.

Write a QuickCheck property that tests that split (join (split c¢)) is the same as
split c, where c is an arbitrary command.

2. Using the above translation from lists, we will write a function to draw regular polygons.

(a)

(b)

Write a function
copy :: Int -> Command -> Command

which given an integer and a command returns a new command consisting of the given
number of copies of the given command, joined together. Thus, the following two com-
mands should be equivalent:

copy 3 (Go 10 :#: Turn 120)
Go 10 :#: Turn 120 :#: Go 10 :#: Turn 120 :#: Go 10 :#: Turn 120

Using copy, write a function

pentagon :: Distance -> Command

that returns a command which traces a pentagon with sides of a given length. Thus,
the following two commands should be equivalent:

pentagon 50

(Go 50.0 :#: Turn 72.0 :#
Go 50.0 :#: Turn 72.0 :#
Go 50.0 :#: Turn 72.0 :#
Go 50.0 :#: Turn 72.0 :#
Go 50.0 :#: Turn 72.0)
(¢) Write a function
polygon :: Distance -> Int -> Command

that returns a command that causes the turtle to trace a path with the given number of
sides, of the specified length. Thus, the following two commands should be equivalent:

polygon 50 5
pentagon 50

Hint: You may need to use the Prelude function fromIntegral to convert an Int to a
Float.

3. Next, we will approximate a spiral, by making our turtle travel increasing (or decreasing)
lengths and turning slightly in between. Our function copy is of no help here, since the
distance the turtle travels changes after each corner it takes. Therefore, your spiral function
will have to be recursive. It’s type signature should be as follows:

spiral :: Distance -> Int -> Distance -> Angle -> Command
Its parameters are

e side, the length of the first segment,
e n, the number of line segments to draw,
e step, the amount by which the length of successive segments changes, and
e angle, the angle to turn after each segment.
To draw such a spiral, we draw n line segments, each of which makes angle angle with the

previous one; the first should be as long as segment and thereafter each one should be longer
by step (or shorter, if step is negative).

Thus, the following two commands should be equivalent:

spiral 30 4 5 30

(Go 30.0 :#: Turn 3
Go 35.0 :#: Turn 3
Go 40.0 :#: Turn 3
Go 45.0 :#: Turn 30.0)

o O O

.0
.0 :
.0

o o

Note: your recursion should definitely stop after n steps (the second parameter), but you
will also need to keep in mind that line segments should better not become negative in length.

Sample output is shown in Figure 2.

4. (Optional) Besides the equalities we saw earlier, we might also want to consider the following
ones:

Go 0 = Sit

Go d :#: Go e = Go (d+e)

Turn 0 = Sit

Turn a :#: Turn b = Turn (a+b)

Figure 2: Spiral (from spiral 0.1 1000 0.1 4)

So the Sit command is equivalent to either moving or turning by zero, and any sequence of
consecutive moves or turns can be collapsed into a single move or turn.

Write a function:
optimise :: Command -> Command
which, given a command p, returns a command q that draws the same picture, but with the

following properties:

e g contains no Sit, Go 0 or Turn O commands.
e g contains no adjacent Go commands.

e g contains no adjacent Turn commands.

For example:

*Main> optimise (Go 10 :#: Sit :#: Go 20 :#:
Turn 35 :#: Go O :#: Turn 15 :#: Turn (-50))
Go 30.0

Note: This one is fairly tricky. You may need to keep trying optimisations until none of
them work, but beware of infinite loops! Think: How will you recognize when you can’t
optimise any further?

Branching and colours

So far we’ve only been able to draw linear paths; we haven’t been able to branch the path in any
way. In the next section, we will make use of two additional command constructors:

data Command = ...
| GrabPen Pen

| Branch Command

where Pen is defined as:

data Pen = Colour Float Float Float
| Inkless

These give two additional forms of path.

e GrabPen p, where p is a pen: causes the turtle to switch to a pen of the given colour. The
following pens are predefined:

white, black, red, green, blue :: Pen

You can create pens with other colours using the Colour constructor, which takes a value
between 0 and 1.0 for each of the red, green and blue components of the colour. The special
Inkless pen makes no output; you can use Inkless to create disjoint pictures with a single
command.

e Branch p, where p is a path: draws the given path and then returns the turtle to direction
and position which it had at the start of the path (rather than leaving it at the end). Pen
changes within a branch have no effect outside the branch.

To see the effect of branching, draw the following path.

let inDirection angle = Branch (Turn angle :#: Go 100) in
join (map inDirection [20,40..360])

Introduction to L-Systems

The Swedish biologist Aristid Lindenmayer developed L-Systems to model the development of
plants.2An L-System consists of a start pattern and a set of rewrite rules which are recursively
applied to the pattern to produce further increasingly complex patterns. For example, Figure 3 was
produced from the “triangle” L-System:

angle: 90
start: +f
rewrite: f — f+f-f-f+f

Each symbol in the string generated by an L-System represents a path command: here, + and -
represent clockwise and anticlockwise rotation and £ represents a forward movement. Which symbols
represent which commands is a matter of convention.

In this system, only the symbol f is rewritten, while the + and - symbols are not. The rewriting
replaces the straight lines with more complex figures.
Here is how to generate a picture with an L-System. Begin with the start pattern. Then apply the

rewrite rule some number of times, replacing the character on the left by the sequence on the right.
For instance, applying the above rule three times gives the following strings in successive steps:

2For more on L-Systems, try http://en.wikipedia.org/wiki/L-System. A very nice book, The Algorith-
mic Beauty of Plants, contains beautiful color illustrations produced by L-Systems; it is available online at
http://algorithmicbotany.org/papers/#abop

Figure 3: Triangle L-System output

Step Pattern
0 +f
1 +f+f-f-f+f

2 +E+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+E+f+f-f-f+f

+f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+E+f+f-f-£+f
+f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-F+f+f+f-f-f+f
3 —f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+f+f+f-f-f+f
—f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+f+E+f-f-f+F
+f+f-f-f+f+f+f-f-f+f-f+f-f-f+f-f+f-f-f+f+E+f-f-f+£

Note that you could continue this process for any number of iterations.

After rewriting the string the desired number of times, replace each character that remains by some
drawing commands. In this case, replace £ with a move forward (say, by 10 units), replace each +
by a clockwise turn through the given angle, and replace each - by an anticlockwise turn through
the given angle.

Converting L-Systems to functions that return turtle commands is straightforward. For example,
the function corresponding to this “triangle” L-System can be written as follows:

triangle :: Int -> Command
triangle x = p :#: f x
where
£f0 = Go 10
f (x+1) =f x :#: p :#: £ x :#: n :#: £ x :#: n :#: £ x :#: p :#: £ x
n = Turn 90
P = Turn (-90)

Study the above definition and compare it with the L-System definition on the previous page. The
above definition is included in LSystem.hs, so you can try it out by typing (for instance):

display (triangle 5)

A couple of things are worth noting. The symbols from the system that are rewritten are imple-
mented as functions that take a “step number” parameter—in this case, only f is rewritten. The
special (x+1) pattern allows us to refer easily to the decremented step number as x. When we have
taken the desired number of steps, the step number bottoms-out at 0, and here £ is just interpreted
as a drawing command. The symbols that are not rewritten are implemented as “zero-argument

Figure 4: Tree L-System output

functions,” or variables, such as n and p. In general, there will be one definition in the where clause
for each letter in the L-System.

A rewrite rule for the L-System may contain clauses in square brackets, which correspond to branches.
For example, here is a second L-System, that uses two letters and branches.

angle: 45

start: f

rewrite: f — g[-f] [+£] [gf]
g — 88

Here is the corresponding code (also included in LSystem.hs.

tree :: Int -> Command
tree x = f x
where
fO0 = GrabPen red :#: Go 10

f (x+1) = g x :#: Branch (n :#: f x)
:#: Branch (p :#: f x)
:#: Branch (g x :#: f x)

g 0 = GrabPen blue :#: Go 10

g (x+1) =g x #: gx

n = Turn 45

P = Turn (-45)

A picture generated by this definition is shown in Figure 4.

Here we use different pens to draw the segments generated by different symbols: this is not part of
the description of the L-system, but it generates prettier pictures.

Exercises

5. Write a function arrowhead ::

angle:
start:
rewrite:

6. Write a function snowflake ::

angle:
start:
rewrite:

7. Write a function hilbert ::

angle:
start:
rewrite:

Note: Not all of the symbols here need to move the turtle.

Int -> Command implementing the following L-System:

60

f

f — gtf+g
g — f-g-f

Int -> Command implementing the following L-System:

60
f--f--f--
£ — f+f-—f+f

Int -> Command implementing the following L-System:

90

1

1 — +rf-1f1-fr+
r — -1f+rfr+fl-

Check your result against

the pictures at http://en.wikipedia.org/wiki/Hilbert_curve and adjust the final values

(eg. T 0 =

Bonus L-Systems

...) until it looks like those.

Just for fun, here are more L-Systems for you to try.

e Peano-Gosper:

angle:
start:
rewrite:

e Cross

angle:
start:
rewrite:

e Branch

angle:
start:
rewrite:

o 32-segment

angle:
start:
rewrite:

60

£

f — f+g++g-f-—ff-g+
g — ~f+gg++gtf-—f-g

90
f-f-f-f-
f — f-f+f+ff-f-f+f

22.5

g

g — f-[lgl+gl+f[+fgl-g
f — ff

90

F+F+F+F

F — -F+F-F-F+F+FF-F+F+FF+F-F-FF+
FF-FF+F+F-FF-F-F+FF-F-F+F+F-F+

The 2008 Informatics 1 Programming Competition

You are invited to enter this year’s Infl programming competition. The first prize is a bottle of
champagne or a book token equivalent. The prize is sponsored by Galois. You can see entries from
past years on the Informatics 1 website.

The competition is optional and unassessed. The prize will go to the best picture generated by a
Haskell program, using turtle commands or anything else you can think of. You may generate this
picture with an L-System or with any other technique: be creative! You may enter alone or with a
group of other students.

Mail your entry to the course teaching assistant, including instructions for running it; be sure it is
clearly labeled with the names of everyone who worked on it. Judging will be by Willem and Phil.

10

