
Screen-scraping
Informatics 1 – Functional Programming: Tutorial 4

Heijltjes, Wadler

Due: The tutorial of week 6 (30/31 Oct.)
Reading assignment: Chapters 10 and 11 (pp. 167-209)

Please attempt the entire worksheet in advance of the tutorial, and bring with you all
work, including (if a computer is involved) printouts of code and test results. Tutorials
cannot function properly unless you do the work in advance.

You may work with others, but you must understand the work; you can’t phone a friend
during the exam.

Assessment is formative, meaning that marks from coursework do not contribute to the
final mark. But coursework is not optional. If you do not do the coursework you are
unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you cannot attend.

Basic Screen Scraper

A “screen scraper” is a tool used to extract data from web sites, by looking at their source. In this
exercise, you will write one of the most hated screen scrapers: one that extracts email addresses.
Why is it hated? Because people use screen scrapers like that to collect email addresses to send
spam to. However, in this exercise we will show you a useful purpose of the email screenscraper!
We are going to be extracting names and emails from web pages written in HTML (HyperText
Markup Language). For instance, from the following HTML:

<html>

<head>

<title>FP: Tutorial 4</title>

</head>

<body>

<h1>A Boring test page</h1>

<h2>for tutorial 4</h2>

FP Website

Lecturer: Philip Wadler

TA: Willem Heijltjes

</body>

</html>

We are going to extract a list of the “<a>” elements, which contain URLs (Uniform Resource
Locators). If a URL begins with http: it is an address of a web page; if it begins with mailto: the
rest of it is an email address. For the document above, here is the list of links (each one contains
some extra data at the end, which is an artifact of the technique we use):

1

["http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/\">FP Website
Lecturer: "

,"mailto:wadler@inf.ed.ac.uk\">Philip Wadler
TA: "

,"mailto:w.b.heijltjes@sms.ed.ac.uk">Willem Heijltjes</body></html>"]

From this list, we will in turn extract a list of names and email addresses:

[("Philip Wadler","wadler@inf.ed.ac.uk"),
("Willem Heijltjes","w.b.heijltjes@sms.ed.ac.uk")]

Download tutorial4.hs from the FP website. This file contains the test html-document and
the lists above: testHTML, testLinks, and testAddrBook. It also defines two useful functions:
takeUntil, dropUntil.
Notice that the type of testLinks is [Link] and the type of testAddrBook is [(Name,Email)]. In
other words: testLinks is a list of Links, and testAddrBook is a list of tuples containing both a
Name and an Email. These appear to be new types which we have not encountered before, but if
you look in the file tutorial6.hs you will find the following type expressions:

type Link = String
type Name = String
type Email = String
type HTML = String
type URL = String

These type declarations simply define aliases for the very familiar type String. Aliases are not
strictly necessary, but they make your program more readable.

Note: If you want to know more about HTML, please visit one of the following sites:
http://www.w3schools.com/html/ (introductory)
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/htmlindex.html (introductory)
http://www.mountaindragon.com/html/ (advanced)

Exercises

1. Write a function sameString :: String -> String -> Bool that returns True when two
strings are the same, but ignores whether a letter is in upper- or lowercase. For example:

*Main> sameString "HeLLo" "HElLo"
True
*Main> sameString "Hello" "Hi there"
False

Check your function using the predefined test property prop_sameString.

2. Write a function prefix :: String -> String -> Bool that checks whether the first string
is a prefix of the second, like the library function isPrefixOf that you used in tutorial3.hs,
but this time it should be case-insensitive.

*Main> prefix "bc" "abCDE"
False
*Main> prefix "Bc" "bCDE"
True

Check your function using the predefined test property prop_prefix.

3. (a) Modify the function contains (from the version in tutorial3.hs) to be case-insensitive.
For example:

2

*Main> contains "bd" "abcde"
False
*Main> contains "Bc" "abCDe"
True

(b) Write a test property prop_contains :: String -> Int -> Int -> Property to test
your contains function. You can take inspiration from prop_prefix.

4. (a) Write a function split :: String -> String -> [String] that divides the second
argument at every occurrence of the first, returning the results as a list. The result
should not include the separator. For example:

*Main> split "," "comma,separated,string"
["comma","separated","string"]
*Main> split "the" "to the winner the spoils!"
["to "," winner "," spoils!"]
*Main> split "end" "this is not the end"
["this is not the ",""]

Your function should return an error if the first argument, the separator string, is an
empty list. You will find the predefined functions takeUntil and dropUntil useful
here—note that these depend on your prefix.

(b) Write a function reconstruct :: String -> [String] -> String that reverses the
result of split. That is, it should take a string and a list of strings, and put the list of
strings back together into one string, with the first string everywhere in between (but
not at the start or at the end).

(c) Look at the predefined test function prop_split and explain what it does. Use it to
test your split function.

5. Use your function split to write a function linksFromHTML :: HTML -> [Link]. You can
assume that a link begins with the string <a href=". Don’t include this separator in the
results, and don’t include the stuff in the HTML that precedes the first link. Example:

*Main> linksFromHTML testHTML
["http://www.inf.ed.ac.uk/teaching/courses/inf1/fp/\">FP Website

Lecturer: "
,"mailto:wadler@inf.ed.ac.uk\">Philip Wadler
TA: "
,"mailto:w.b.heijltjes@sms.ed.ac.uk">Willem Heijltjes</body></html>"]

Note: to include the character " in a string, precede it with a backslash (\), as \".

Use testLinksFromHTML to test your function on the given sample data. Note that this test
does not require QuickCheck, since it does not depend on randomly generated input.

6. Write a function takeEmails :: [Link] -> [Link] which takes just the email addresses
from a list of links given by linksFromHTML. Example:

*Main> takeEmails testLinks
["mailto:wadler@inf.ed.ac.uk\">Philip Wadler
TA: ",
"mailto:w.b.heijltjes@sms.ed.ac.uk">Willem Heijltjes</body></html>"]

7. Write a function link2pair :: Link -> (Name, Email) which converts a mailto link into
a pair consisting of a name and the corresponding email address. The name is the part of the
link between the and tags; the email address is the part in the quotes
after mailto:. Add an appropriate error message if the link isn’t a mailto: link. Example:

*Main> link2pair "mailto:john@smith.co.uk\">John"
("John","john@smith.co.uk")

3

8. Combine your functions linksFromHTML, takeEmails and link2pair to write a function
emailsFromHTML :: HTML -> [(Name, Email)] that extracts all mailto links from a web-
page, turns them into (Name, Email) pairs, and then removes duplicates from that list.
Example:

*Main> emailsFromHTML testHTML
[("Philip Wadler","wadler@inf.ed.ac.uk"),
("Willem Heijltjes","w.b.heijltjes@sms.ed.ac.uk")]

Note: the library function nub :: [a] -> [a] removes duplicates from a list.

You can test your function with testEmailsFromHTML.

Pulling in live URLs

The function emailsFromURL, which is already defined in tutorial4.hs, extracts email addresses
from a URL using your very own emailsFromHTML. Test your function emailsFromHTML by testing
it on real URLs of your choice, for example:

• emailsFromURL groupURL

• emailsFromURL tutorialURL

• Your own webpage, or if you do not have one, your favourite URL.

Note: the function getURL that gets the webpage from the URL probably doesn’t work on your
home computer. You can complete the tutorial without processing real web pages, but it is probably
instructive if you come to the lab to try out your functions.
As you will have seen, emailsFromURL sometimes produces a rather long list of names and email
addresses. Sometimes you have a vague idea of who it is you are looking for and in that case, you
do not want to go through the entire list of names one-by-one. Over the next few exercises you will
be implementing a function emailsByNameFromURL in order to find the email address of a person
whose name you kind of know.
The function emailsFromURL uses an additional function, getURL, to retrieve HTML from a URL.
Unlike most of the functions that you’ve used so far, getURL both interacts with the outside world
(the internet) and returns a value (the HTML retrieved). If you use getURL at the ghci prompt,
you’ll notice that ghci doesn’t display the value returned. You can display the value by storing it
in a variable using the special name <- expression form, and then typing name:

*Main> html <- getURL "http://homepages.inf.ed.ac.uk/wadler/test.html"
*Main> html
"<html><head><title>FP: Lab 3 and Assignment 2 ..."

Chapter 18 of Thompson explains the details of functions of this kind, which are beyond the scope
of this course.

Exercises

9. Write a function findEmail :: Name -> [(Name,Email)] -> [(Name,Email)] which given
(part of) a name and a list of (Name,Email) pairs, returns a list of those pairs which match
the name. Example:

*Main> findEmail "Phil" testAddrBook
[("Philip Wadler","wadler@inf.ed.ac.uk")]
*Main> findEmail "Wil" testAddrBook
[("Willem Heijltjes","w.b.heijltjes@sms.ed.ac.uk")]

4

*Main> findEmail "il" testAddrBook
[("Philip Wadler","wadler@inf.ed.ac.uk")
,("Willem Heijltjes","w.b.heijltjes@sms.ed.ac.uk")]

10. Define the function emailsByNameFromHTML :: HTML -> Name -> [(Name, Email)]. This
function should take an HTML string and (part of) a name, and return all (Name,Email)
pairs which match the name.

*Main> emailsByNameFromHTML testHTML "Phil"
[("Philip Wadler","wadler@inf.ed.ac.uk")]

The function emailsByNameFromURL, which is already defined in tutorial4.hs, uses your very own
emailsByNameFromHTML function to extract the email address of a certain person from a live URL.
You can try it out in the following ways:

• emailsByNameFromURL groupURL "Your Name"

• emailsByNameFromURL labURL "Your Name"

• emailsByNameFromURL tutorialURL "Your Name"

Maybe you can try it on your own webpage, if you have one.

5

Pretty Printing (Optional)

We often want to look at the output of a function (say emailsFromHTML) in a slightly nicer way.
This is called pretty printing. In emailsFromURL the output of emailsFromHTML is currently being
pretty printed by a function called ppAddrBook. In this exercise, you will be rewriting that function
to make emailsFromURL produce a different output.
You will need two pieces of information to complete this exercise. First of all, you may assume
that if a name has more than two words, the first name is the first word and the last name is the
remaining words1. Second, all of the names should line up and all of the email addresses should line
up—no matter how long the names are. For example:

Heijltjes, Willem w.b.heijltjes@sms.ed.ac.uk
Wadler, Philip wadler@inf.ed.ac.uk

In order to print a block of text like this to the screen, we can’t simply return it from a function,
because GHCi will faithfully escape all the funny characters in the string, such as newlines. The
function putStr takes a string and prints it to the screen, which involves turning newline characters
’\n’ into actual new lines. For example:

*Main> putStr "First Line\nSecond Line\nThird Line\n"
First Line
Second Line
Third Line

Exercises

11. (Optional) Rewrite the function ppAddrBook :: [(Name,Email)] -> String so that it lines
up the names and email addresses in two separate columns. For example:

*Main> putStr (ppAddrBook testAddrBook)
Wadler, Philip wadler@inf.ed.ac.uk
Heijltjes, Willem w.b.heijltjes@sms.ed.ac.uk

Try the functions emailsFromURL and emailsByNameFromURL again with the predefined URLs
groupURL and tutorialURL. You will find that the names on the “groupURL” page are listed
in “surname, first name” format, the ones in “tutorialURL” are given in the regular “first
name surname” format. Make sure your function can cope with both formats.

Note: the page at “tutorialURL” also contains links to send mail to an entire tutorial group.
These will get listed in a funny way.

1Note that this is the way the British classification system works, but that it does not provide a correct classification
for many non-English names.

6

