
The Caesar Cipher
Informatics 1 – Functional Programming: Tutorial 3

Heijltjes, Wadler

Due: The tutorial of week 5 (23/24 Oct.)
Reading assignment: Chapters 8 and 9 (pp. 135-166)

Please attempt the entire worksheet in advance of the tutorial, and bring with you all
work, including (if a computer is involved) printouts of code and test results. Tutorials
cannot function properly unless you do the work in advance.

You may work with others, but you must understand the work; you can’t phone a friend
during the exam.

Assessment is formative, meaning that marks from coursework do not contribute to the
final mark. But coursework is not optional. If you do not do the coursework you are
unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you cannot attend.

The Caesar Cipher

When we talk about cryptography these days, we usually refer to the encryption of digital messages,
but encryption actually predates the computer by quite a long period. One of the best examples
of early cryptography is the Caesar cipher, named after Julius Caesar because he is believed to
have used it, even if he didn’t actually invent it. The idea is simple: take the message you want to
encrypt and shift all letters by a certain amount between 0 and 26 (called the offset). For example:
encrypting the sentence “THIS IS A BIG SECRET” with shifts of 5, would result in “YMNX NX
F GNL XJHWJY”.
In this exercise you will be implementing a variant of the Caesar cipher.

Encrypting text

A character-by-character cipher such as a Caesar cipher can be represented by a key, a list of pairs.
Each pair in the list indicates how one letter should be encoded. For example, a cipher for the letters
A–E could be given by the list [(’A’, ’C’), (’B’, ’D’), (’C’, ’E’), (’D’, ’A’), (’E’, ’B’)].
Although it’s possible to choose any letter as the ciphertext for any other letter, this tutorial deals
mainly with the type of cipher where we encipher each letter by shifting it the same number of spots
around a circle, for the whole English alphabet.

Exercises

1. We can rotate a list by taking some items off the front of it and putting them on the end.
For example:

Main> rotate 3 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"DEFGHIJKLMNOPQRSTUVWXYZABC"

1



Write the function rotate :: Int -> [Char] -> [Char]. Your function should return an
error (using the library function error) if the number is too small (less than 0) or too large
(greater than the length of the list).

2. Look at the test function prop_rotate.

(a) What precisely does it test?

(b) How does it make sure that rotate does not produce an error?

3. Using the function rotate from the previous question, write a function

makeKey :: Int -> [(Char, Char)]

that returns the cipher key with the given offset. See above for the description of how the
cipher key is represented as a list of pairs. Example:

Main> makeKey 5
[(’A’,’F’),(’B’,’G’),(’C’,’H’),(’D’,’I’),(’E’,’J’),(’F’,’K’),
(’G’,’L’),(’H’,’M’),(’I’,’N’),(’J’,’O’),(’K’,’P’),(’L’,’Q’),
(’M’,’R’),(’N’,’S’),(’O’,’T’),(’P’,’U’),(’Q’,’V’),(’R’,’W’),
(’S’,’X’),(’T’,’Y’),(’U’,’Z’),(’V’,’A’),(’W’,’B’),(’X’,’C’),
(’Y’,’D’),(’Z’,’E’)]

The cipher key should show how to encrypt all of the uppercase English letters, and there
should be no duplicates: each letter should appear just once amongst the pairs’ first compo-
nents (and just once amongst the second components).

4. Write a function

lookUp :: Char -> [(Char, Char)] -> Char

that finds a pair by its first component and returns that pair’s second component. When you
try to look up a character that does not occur in the cipher key, your function should leave
it unchanged. Examples:

Main> lookUp ’B’ [(’A’, ’F’), (’B’, ’G’), (’C’, ’H’)]
’G’
Main> lookUp ’9’ [(’A’, ’X’), (’B’, ’Y’), (’C’, ’Z’)]
’9’

5. Write a function

encipher :: Int -> Char -> Char

that encrypts the given single character using the key with the given offset. For example:

Main> encipher 5 ’C’
’H’
Main> encipher 7 ’Q’
’X’

6. Text encrypted by a cipher is conventionally written in uppercase and without punctuation.
Write a function

normalize :: String -> String

that converts a string to uppercase, removing all characters other than letters and digits
(remove spaces too). Example:

Main> normalize "July 4th!"
"JULY4TH"

7. Write a function

encipherStr :: Int -> String -> String

2



that normalizes a string and encrypts it, using your functions normalize and encipher.
Example:

Main> encipherStr 5 "July 4th!"
"OZQD4YM"

Decoding a message

The Caesar cipher is one of the easiest forms of encryption to break. Unlike most encryption schemes
commonly in use today, it is susceptible to a simple brute-force attack of trying all the possible keys
in succession. The Caesar cipher is a symmetric key cipher: the key has enough information within
it to use it for encryption as well as decryption.

Exercises

8. Decrypting an encoded message is easiest if we transform the key first. Write a function

reverseKey :: [(Char, Char)] -> [(Char, Char)]

to reverse a key. This function should swap each pair in the given list. For example:

Main> reverseKey [(’A’, ’G’), (’B’, ’H’) , (’C’, ’I’)]
[(’G’, ’A’), (’H’, ’B’) , (’I’, ’C’)]

9. Write the functions

decipher :: Int -> Char -> Char
decipherStr :: Int -> String -> String

that decipher a character and a string, respectively, by using the key with the given offset.
Your function should leave digits and spaces unchanged, but remove lowercase letters and
other characters. For example:

Main> decipherStr 5 "OZQD4YM"
"JULY4TH"

More QuickCheck tricks

To test the rotate function we had to make sure that the test function did not generate any errors.
The input, randomly generated by QuickCheck, had to obey certain criteria—you found out which
in exercise (2).
In the test prop_rotate we made sure the input was of the right kind by changing it. But this is
not always the best solution, and sometimes it is not even possible. A more general way to ensure
the input of a function has a certain property, is to use an implication ‘==>’.
The QuickCheck implication is a lot like a logical implication. It takes two Boolean expressions as
arguments, for example expr1 and expr2 (its resulting type is called Property):

expr1, expr2 :: Bool

prop_test :: Property
prop_test = expr1 ==> expr2

In general, the property described above holds if expr1 is False or expr2 is True. However, to make
sure that all tests are relevant, QuickCheck ignores the test if expr1 is False, and only counts the
tests in which both expr1 and expr2 are True:

*Main> quickCheck (True ==> True)
OK, passed 100 tests.
*Main> quickCheck (False ==> True)
Arguments exhausted after 0 tests.

3



As you can see, QuickCheck does not continue to generate values forever; if after a certain amount
of tests expr2 still isn’t True, it will stop with the message ‘arguments exhausted ’.

Exercises

10. To see if your encryption works, write a QuickCheck test prop_cipher to verify that decoding
an encoded string with the same key returns the original message — but then in uppercase
and without spacing or punctuation (“normalized”). Use ‘==>’ to make sure your test doesn’t
generate any errors.

Breaking the encryption

One kind of brute-force attack on an encrypted string is to decrypt it using each possible key and then
search for common English letter sequences in the resulting text. If such sequences are discovered
then the key is a candidate for the actual key used to encrypt the plaintext. For example, the words
“the” and “and” occur very frequently in English text: in the Adventures of Sherlock Holmes, “the”
and “and” account for about one in every 12 words, and there is no sequence of more than 150 words
without either “the” or “and”.
The conclusion to draw is that if we try a key on a sufficiently long sequence of text and the result
does not contain any occurrences of “the” or “and” then the key can be discarded as a candidate.

Exercises

11. Write a function

candidates :: String -> [(Int, String)]

that decrypts the input string with each of the 26 possible keys and, when the decrypted text
contains “THE” or “AND”, includes the decryption key and the text in the output list.

Main> candidates "DGGADBCOOCZYMJHZYVMTOJOCZHVS"
[(5,"YBBVYWXJJXUTHECUTQHOJEJXUCQN"),
(14,"PSSMPNOAAOLKYVTLKHYFAVAOLTHE"),
(21,"ILLFIGHTTHEDROMEDARYTOTHEMAX")]

Hint : Use the function contains you defined in Tutorial 2.

4



Appendix: Utility function reference

Note: To use these functions you’ll need to add this line to the top of your program:
import Char

ord :: Char -> Int (Thompson p. 42)
Return the numerical code corresponding to a character
Examples: ord ’A’ == 65 ord ’1’ == 49
See also: http://www.zvon.org/other/haskell/Outputchar/ord_f.html

chr :: Int -> Char (Thompson p. 42)
Return the character corresponding to a numerical code
Examples: chr 65 == ’A’ chr 49 == ’1’
See also: http://www.zvon.org/other/haskell/Outputchar/chr_f.html

mod :: Int -> Int -> Int (Thompson p. 36)
Return the remainder after the first argument is divided by the second
Examples: mod 10 3 == 1 mod 25 5 == 0
See also: http://www.zvon.org/other/haskell/Outputprelude/mod_f.html

isAlpha :: Char -> Bool

Return True if the argument is an alphabetic character
Examples: isAlpha ’3’ == False isAlpha ’x’ == True
See also: http://www.zvon.org/other/haskell/Outputchar/isAlpha_f.html

isUpper :: Char -> Bool

Return True if the argument is an uppercase letter
Examples: isUpper ’x’ == False isUpper ’X’ == True
See also: http://www.zvon.org/other/haskell/Outputchar/isUpper_f.html

isLower :: Char -> Bool

Return True if the argument is a lowercase letter
Examples: isLower ’3’ == False isLower ’x’ == True
See also: http://www.zvon.org/other/haskell/Outputchar/isLower_f.html

toUpper :: Char -> Char (Thompson p. 42)
If the argument is an alphabetic character, convert it to upper case
Examples: toUpper ’x’ == ’X’ toUpper ’3’ == ’3’
See also: http://www.zvon.org/other/haskell/Outputchar/toUpper_f.html

isPrefixOf :: String -> String -> Bool

Return True if the first list argument is a prefix of the second
Examples: isPrefix "has" "haskell" == True isPrefix "has" "handle" == False
See also: http://www.zvon.org/other/haskell/Outputlist/isPrefixOf_f.html

error :: String -> a (Thompson p. 61)
Signal an error
Examples: error "Function only defined on positive numbers!"
See also: http://www.zvon.org/other/haskell/Outputprelude/error_f.html

5


