Chess

Informatics 1 — Functional Programming: Tutorial 1

Heijltjes, Wadler

Due: The tutorial of week 3 (9/10 Oct.)
Reading assignment: Chapters 4 and 5 (pp. 53-95)

Please attempt the entire worksheet in advance of the tutorial, and bring with you all
work, including (if a computer is involved) printouts of code and test results. Tutorials
cannot function properly unless you do the work in advance.

You may work with others, but you must understand the work; you can’t phone a friend
during the exam.

Assessment is formative, meaning that marks from coursework do not contribute to the
final mark. But coursework is not optional. If you do not do the coursework you are
unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you cannot attend.

The ChessPieces module

In this tutorial we will be drawing pictures of chess pieces on a board. Download the package
tutoriall.zip from the website and unzip it. The package contains three files:

ChessPieces.hs Pictures.hs tutoriall.hs

Open the last file, which contains this week’s exercises, in emacs. Load it into GHCi and type this
at the prompt:

Main> display knight

A window should appear displaying a picture of a white knight chess piece on a blue background:

2

The tutorial file tutoriall.hs gets the chess pieces from the file ChessPieces.hs by means of the
first line of the file:

import ChessPieces

The file ChessPieces.hs in turn uses Pictures.hs, so you don’t need to worry about that one.
Note: If you get an error that GHCi can’t find a module, you should put the files into the same
directory (folder).

All in all the file ChessPieces.hs includes all chess pieces, white and grey squares to create a
chessboard, and some functions to manipulate the images. The following tables show the basic
pictures:

Chess pieces Board squares

bishop A bishop blackSquare A black (grey) square* .
king A king
knight A knight

pawn A pawn

whiteSquare A white square

* The black square is grey so that you can see the

queen A queen black pieces on it; but if you invert it, it becomes

rook A rook =t white (and the white square becomes grey).

And these are the functions for arranging them:

flipVv reflection in the vertical axis
flipH reflection in the horizontal axis
invert change black to white and vice versa

superimpose place one picture onto another

beside place one picture next to another

above place one picture above another

repeatH place several copies of a picture side by side
repeatV stack several copies of a picture vertically

Amongst these are the functions beside, above, invert, f1ipV and £1ipH (you have read on these
last two functions in chapter 1 of the textbook). Try applying these in various combinations to learn
how they behave (for instance: what happens if you put pictures of different height side by side).
Just as with the simple picture knight, you can see the modified pictures by using the display
function (be patient with large pictures). You'll probably need some parentheses, for example:

Main> display (beside knight (f1lipV knight))

Exercises

1. Use the knight picture and the above transformation functions to create the following two
pictures:

NA NA
AN B

Feel free to use a convenient intermediate picture for the second image, but for the next
exercise it is better if you don’t do this for the first image.

The fourth function, superimpose, can place a piece on a square, like this:
Main> display (superimpose rook blackSquare)
The result should look like this: 7. You can use superimpose both ways around to put pieces on
squares, but if you try to put pieces on top of other pieces, strange things may happen.
Exercises

2. We will create a function that takes a picture of a chess piece and puts four of them together,
like the knights in the first picture of exercise (1). In other words, your function should work
as in the following examples:

Main> display (fourPieces bishop)

Main> display (fourPieces king) e 1)

(a) Write the function fourPieces that does this. Note: if you don’t know how to start,
take another look at the functions in the previous tutorial.

(b) Try to predict what the following command will display:
Main> display (fourPieces (fourPieces knight))

Then go ahead and see if you were right.

3. (a) Create a picture fourSquares of four chessboard squares like this:

(b) Using the pictures and functions you have, and the function superimpose, create the

following picture:

(c) Now create a function piecesOnSquares that puts four pieces together on four squares,
like this:

Main> display (piecesOnSquares rook)

Main> display (piecesOnSquares queen)

The functions repeatH and repeatV create a row or column of identical pictures, in the following
way (try this out):

Main> display (repeatH 4 (superimpose (invert king) whiteSquare))

The full chessboard

Next, we will build a picture of a fully populated chessboard.
Notes:
e When a problem says “... using the function (or picture) foo,” you must use the function foo.

A solution that does not use that function will not be accepted, but of course you can use
other functions as well.

e Unless an exercise says you can’t, you are free to define intermediate functions, or pictures in
this case, if that makes it easier to define the solution to an exercise.
Exercises

4. (a) Using the repeatH function, create a picture emptyRow representing one of the empty
rows of a chessboard (this one starts with a white square).

(b) Using the picture emptyRow from the last question, create a picture called otherEmptyRow,
this time representing the other empty rows of a chessboard (this one starts with a grey
square).

L]

(¢) Using the previous two pictures, make a picture middleBoard representing the four
empty rows in the middle of a chessboard:

.

/%%
%/

(d) Create a picture whiteRow representing the bottom row of (white) pieces on a chess-
board, each on their proper squares. Also create a pictureblackRow for the top row of
(black) pieces. You can use intermediate pictures, but try to keep your knights pointing

(e) Using the pictures you defined in your answers to the questions above, create a fully-
populated board (populatedBoard). It will be helpful to make pictures blackPawns
and whitePawns for the two rows of pawns. The result should look like this:

»

AFEATEATLA
0 W o H

Note: be patient while the program is drawing the board, it may take some time to
appear in the window.

QuickCheck tests
At the end of the tutorial file tutoriall.hs you will find two QuickCheck functions:

prop_assoc_above
prop_invol_invert

Exercises
5. (a) Run the appropriate QuickCheck tests to verify these properties.
(b) Look at the test functions and explain what they do, and why they are true.

(c) Write a test function prop_assoc_beside that tests the same property (associativity)
as prop_assoc_above, but then for the beside function.

