
Informatics 1
Functional Programming Lectures 17 and 18
Monday 24 and Tuesday 25 November 2008

Arithmetic

Philip Wadler
University of Edinburgh

The 2008 Informatics 1 Competition

• Prize: A bottle of champagne or book token equivalent

• Sponsored by Galois (galois.com)

• List everyone who worked on the entry
If you win, do you want Champagne or a book token?

• Deadline: 4pm Friday 28 November 2008
email to ¡w.b.heijltjes@sms.ed.ac.uk¿

• You may find some inspiration here:

www.contextfreeart.org

(Thanks to Aleksandar Krastev for the suggestion.)

Required reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Thompson, Chapters 1–3 (pp. 1–52): by Mon 29 Sep 2008.
Thompson, Chapters 4–5 (pp. 53–95): by Mon 6 Oct 2008.
Thompson, Chapters 6–7 (pp. 96–134): by Mon 13 Oct 2008.
Thompson, Chapters 8–9 (pp. 135–166): by Mon 20 Oct 2008.
Thompson, Chapters 10–11 (pp. 167–209): by Mon 3 Nov 2008.
Thompson, Chapters 12–14 (pp. 210–279): by Mon 10 Nov 2008.
Thompson, Chapters 15–17 (pp. 280–382): by Mon 17 Nov 2008.
Thompson, Chapters 18–20 (pp. 338–441): by Mon 24 Nov 2008.

Thompson and other books available in ITO.

Part I

Arithmetic over Naturals

Naturals

data Nat = Z | S Nat

Values

Z stands for 0 — zero
S n stands for n+1 — successor

Arithmetic

(+) :: Nat -> Nat -> Nat
m + Z = m
m + (S n) = S (m + n)

(*) :: Nat -> Nat -> Nat
m * Z = Z
m * (S n) = (m * n) + m

(ˆ) :: Nat -> Nat -> Nat
m ˆ Z = S Z
m ˆ (S n) = (m ˆ n) * m

An example of addition

3 + 2
=
(S (S (S Z))) + (S (S Z))

=
S ((S (S (S Z))) + (S Z))

=
S (S ((S (S (S Z))) + Z))

=
S (S (S (S (S Z))))

An example of multiplication

3 * 2
=
(S (S (S Z))) * (S (S Z))

=
((S (S (S Z))) * (S Z)) + (S (S (S Z)))

=
(((S (S (S Z))) * Z) + (S (S (S Z)))) + (S (S (S Z)))

=
(Z + (S (S (S Z)))) + (S (S (S Z)))

=
S (S (S (S (S (S Z)))))

In Haskell notation

(+) :: Int -> Int -> Int
m + 0 = m
m + (n+1) = (m + n)+1

(*) :: Int -> Int -> Int
m * 0 = 0
m * (n+1) = (m * n) + m

(ˆ) :: Int -> Int -> Int
m ˆ 0 = 1
m ˆ (n+1) = (m ˆ n) * m

Type classes

class Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a

instance Num Int where
m + 0 = m
m + (n+1) = (m + n)+1

m ˆ 0 = 1
m ˆ (n+1) = (m ˆ n) * m

(ˆ) :: (Num a, Integral b) => a -> b -> a
x ˆ 0 = 1
x ˆ (n+1) = (x ˆ n) * x

Part II

Arithmetic over Types

Tuples

data Pair a b = Pair a b

Type

(a,b) stands for Pair a b

Values

(x,y) stands for Pair x y

Arithmetic

If there are m values x :: a,
and n values y :: b,

then there are m× n values (x,y) :: (a,b).

Set theory

(a,b) is the cartesian product of a and b.

Tuples

data Bool = False | True
data Colour = Red | Green | Blue

Arithmetic

There are 2× 3 = 6 values of type (Bool, Colour).

(False, Red)
(False, Green)
(False, Blue)
(True, Red)
(True, Green)
(True, Blue)

Unit

data Unit = Unit

Type

() stands for Unit

Values

() stands for Unit

Arithmetic

There is 1 value () of type ().

Set theory

() is a singleton set.

Unit

data Colour = Red | Green | Blue

Arithmetic

There are 1× 3 = 3 values of type ((), Colour).

((), Red)
((), Green)
((), Blue)

Either

data Either a b = Left a | Right b

Type

Either a b

Values

Left x

Right y

Arithmetic

If there are m values x :: a,
and n values y :: b,

then there are m + n values Left x, Right y :: Either a b.

Set theory

Either a b is the disjoint union of a and b.

Either

data Bool = False | True
data Colour = Red | Green | Blue

Arithmetic

There are 2 + 3 = 5 values of type Either Bool Colour.

Left False
Left True
Right Red
Right Green
Right Blue

Empty

data Empty

Type

Empty

Values

(there are none!)

Arithmetic

There are 0 values of type Empty.

Set theory

Empty is the empty set.

Empty

data Colour = Red | Green | Blue

Arithmetic

There are 0 + 3 = 3 values of type Either Empty Colour.

Right Red
Right Green
Right Blue

(there are no values Left x!)

Booleans

data Bool = False — True

Correspondence

Either () () corresponds to Bool
Left () corresponds to False
Right () corresponds to True

Arithmetic

There are two values False, True :: Bool.

1 + 1 = 2

Maybe

data Maybe a = Nothing | Just a

Correspondence

Either Unit a correspond to Maybe a

Left () corresponds to Nothing
Right x corresponds to Just x

Arithmetic

If there are m values x :: a,
then there are m + 1 values Nothing, Just x :: Maybe a.

A use of Maybe

Comprehension

lookup :: a -> [(a,b)] -> Maybe b
lookup x xys = f [y’ | (x’,y’) <- xys, x == x’]
where
f [] = Nothing
f (y:ys) = Just y

Recursion

lookup :: a -> [(a,b)] -> Maybe b
lookup x [] = Nothing
lookup x ((x’,y’):xys)
| x == x’ = Just x
| otherwise = lookup x xys

Lists

data List a = Nil | Cons a (List a)

Type

[a] stands for List a

Values

[] stands for Nil
x:xs stands for Cons x xs

Correspondence

Either () (a, List a) corresponds to List a

Left () corresponds to []
Right (x,xs) corresponds to x:xs

Naturals

data Nat = Z | S Nat

Type

Int (often) stands for Nat

Values

0 stands for Z — zero
n+1 stands for S n — successor

Correspondence

Either () Nat corresponds to Nat
Left () corresponds to 0
Right n corresponds to n+1

Functions

The one data type that is not an algebraic type!

Type

a -> b

Values

\x -> y

where x :: a and y :: b

Arithmetic

If there are m values x :: a

and n values y :: b

then there are nm functions \x -> y :: a -> b.

Representing functions

Sometimes we represent a function with list of pairs.

type Fun a b = [(a,b)]

nilFun :: a -> b
nilFun x = undefined

consFun :: (Eq a) => (a,b) -> (a -> b) -> (a -> b)
consFun (x,y) f x’ | x == x’ = y

| otherwise = f x’

convert :: (Eq a) => Fun a b -> (a -> b)
convert xys x = foldr consFun nilFun xys

Observe

convert [] = nilFun
convert ((x,y):xys) = consFun (x,y) (convert xys)

Representing functions

Remarkably, we have convert == lookUp

lookUp :: (Eq a) => Fun a b -> a -> b
lookUp xys x = the [y | (x’,y) <- xys, x == x’]
where
the [x] = x

Part III

Arithmetic over Lists

Arithmetic over lists

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

(**) :: [a] -> [b] -> [(a,b)]
xs ** ys = [(x,y) | x <- xs, y <- ys]

(ˆˆ) :: [b] -> [a] -> [[(a,b)]]
ys ˆˆ [] = [[]]
ys ˆˆ (x:xs) = [(x,y):e | y <- ys, e <- ysˆˆxs]

Arithmetic over lists, revisited

(+++) :: [a] -> [b] -> [Either a b]
[] +++ ys = map Right ys
(x:xs) +++ ys = Left x : (xs +++ ys)

(***) :: [a] -> [b] -> [(a,b)]
[] *** ys = []
(x:xs) *** ys = map f (ys +++ (xs *** ys))
where
f (Left y) = (x,y)
f (Right p) = p

(ˆˆˆ) :: [b] -> [a] -> [a -> b]
ys ˆˆˆ [] = [nilFun]
ys ˆˆˆ (x:xs) = map g (ys *** (ys ˆˆˆ xs))
where
g (y,e) = consFun (x,y) e

