Informatics 1

Functional Programming Lectures 17 and 18 Monday 24 and Tuesday 25 November 2008

Arithmetic

Philip Wadler

University of Edinburgh

The 2008 Informatics 1 Competition

- Prize: A bottle of champagne or book token equivalent
- Sponsored by Galois (galois.com)
- List everyone who worked on the entry

If you win, do you want Champagne or a book token?

- Deadline: 4pm Friday 28 November 2008 email to $; \mathbf{w} . b . h e i j l t j e s @ s m s . e d . a c . u k_{i}$
- You may find some inspiration here:

> www.contextfreeart.org
(Thanks to Aleksandar Krastev for the suggestion.)

Required reading

Haskell: The Craft of Functional Programming, Second Edition, Simon Thompson, Addison-Wesley, 1999.

Thompson, Chapters 1-3 (pp. 1-52): by Mon 29 Sep 2008.
Thompson, Chapters 4-5 (pp. 53-95): by Mon 6 Oct 2008.
Thompson, Chapters 6-7 (pp. 96-134): by Mon 13 Oct 2008.
Thompson, Chapters 8-9 (pp. 135-166): by Mon 20 Oct 2008.
Thompson, Chapters 10-11 (pp. 167-209): by Mon 3 Nov 2008.
Thompson, Chapters 12-14 (pp. 210-279): by Mon 10 Nov 2008.
Thompson, Chapters 15-17 (pp. 280-382): by Mon 17 Nov 2008.
Thompson, Chapters 18-20 (pp. 338-441): by Mon 24 Nov 2008.
Thompson and other books available in ITO.

Part I

Arithmetic over Naturals

Naturals

data Nat $=$ Z | S Nat

Values

> Z stands for $0-$ zero
> $S \quad n$ stands for $n+1-$ successor

Arithmetic

$$
\begin{aligned}
& \text { (+) : : Nat -> Nat -> Nat } \\
& \mathrm{m}+\mathrm{Z}=\mathrm{m} \\
& m+(S n)=S(m+n) \\
& \text { (*) : : Nat -> Nat -> Nat } \\
& m * Z \quad=\quad Z \\
& m *(S n)=(m * n)+m \\
& \begin{aligned}
\left({ }^{\wedge}\right) & :: \text { Nat }->\text { Nat }->\text { Nat } \\
m^{\wedge} Z_{Z} & =S Z
\end{aligned} \\
& m^{\wedge}(S \mathrm{n})=\left(\mathrm{m}^{\wedge} \mathrm{n}\right) \star \mathrm{m}
\end{aligned}
$$

An example of addition

$$
\begin{aligned}
& 3+2 \\
& = \\
& (S \quad(S \quad(S Z)))+(S \quad(S Z)) \\
& = \\
& \text { S ((S (S (S Z))) + (S Z)) } \\
& \text { S (S ((S (S (S Z))) + Z)) } \\
& S \quad(S \quad(S \quad(S \quad(S Z))))
\end{aligned}
$$

An example of multiplication

```
\(3 \times 2\)
\(=\)
    \((S \quad(S \quad(S \quad Z))) \star(S \quad(S \quad Z))\)
\(=\)
    \(((S \quad(S \quad(S Z))) *(S\) Z \())+(S \quad(S \quad(S\) Z \()))\)
\(=\)
    \((((S \quad(S \quad(S Z))) \star Z)+(S \quad(S \quad(S Z))))+(S \quad(S \quad(S Z)))\)
\(=\)
    \((Z+(S(S \quad(S Z))))+(S \quad(S \quad(S \quad Z)))\)
\(=\)
    \(S(S \quad(S \quad(S \quad(S \quad(S \quad Z)))))\)
```


In Haskell notation

$$
\begin{aligned}
& \text { (+) : : Int -> Int -> Int } \\
& \mathrm{m}+0=\mathrm{m} \\
& m+(n+1)=(m+n)+1 \\
& \text { (*) : : Int -> Int -> Int } \\
& m * 0=0 \\
& m *(n+1)=(m * n)+m \\
& \text { (^) : : Int -> Int -> Int } \\
& m \text { ^ } 0=1 \\
& m \wedge(n+1)=(m \wedge n) * m
\end{aligned}
$$

Type classes

```
class Num a where
    \((+):: a \quad->a->a\)
    (*) : : a \(->\) a \(->a\)
instance Num Int where
    \(m+0=m\)
    \(m+(n+1)=(m+n)+1\)
    \(m \wedge 0 \quad=1\)
    \(m \wedge(n+1)=(m \wedge n) \star m\)
(^) : : (Num a, Integral b) \(=>\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{a}\)
\(x^{\wedge} 0=1\)
\(x^{\wedge}(n+1)=\left(x^{\wedge} n\right) * x\)
```


Part II

Arithmetic over Types

Tuples

```
data Pair a b = Pair a b
```

Type

$$
(\mathrm{a}, \mathrm{~b}) \text { stands for Pair } \mathrm{a} \text { b }
$$

Values

$$
(x, y) \text { stands for Pair } x y
$$

Arithmetic

> If there are m values $\mathrm{x}:: \mathrm{a}$, and n values $\mathrm{y}:: \mathrm{b}$, then there are $m \times n$ values $(\mathrm{x}, \mathrm{y}):: \quad(\mathrm{a}, \mathrm{b})$.

Set theory

$$
(\mathrm{a}, \mathrm{~b}) \text { is the cartesian product of } \mathrm{a} \text { and } \mathrm{b} .
$$

Tuples

```
data Bool = False | True
data Colour = Red | Green | Blue
```

Arithmetic
There are $2 \times 3=6$ values of type (Bool, Colour).

```
(False, Red)
(False, Green)
(False, Blue)
(True, Red)
(True, Green)
(True, Blue)
```


Unit

```
data Unit = Unit
```

Type
() stands for Unit

Values
() stands for Unit

Arithmetic
There is 1 value () of type ().
Set theory
() is a singleton set.

Unit

```
data Colour = Red | Green | Blue
```

Arithmetic
There are $1 \times 3=3$ values of type ((), Colour).
((), Red)
((), Green)
((), Blue)

Either

```
data Either a b = Left a | Right b
```

Type
Either a b

Values

$$
\begin{gathered}
\text { Left x } \\
\text { Right y }
\end{gathered}
$$

Arithmetic
If there are m values $x: \quad a$, and n values $y \quad: \quad \mathrm{b}$, then there are $m+n$ values Left x , Right $\mathrm{y}:$: Either a b.

Set theory

$$
\text { Either } \mathrm{a} \text { b is the disjoint union of } \mathrm{a} \text { and } \mathrm{b} \text {. }
$$

Either

```
data Bool = False | True
data Colour = Red | Green | Blue
```

Arithmetic
There are $2+3=5$ values of type Either Bool Colour. Left False
Left True
Right Red
Right Green
Right Blue

Empty

```
data Empty
```

Type
Empty

Values
(there are none!)
Arithmetic
There are 0 values of type Empty.
Set theory
Empty is the empty set.

Empty

```
data Colour = Red | Green | Blue
```

Arithmetic
There are $0+3=3$ values of type Either Empty Colour. Right Red
Right Green
Right Blue
(there are no values Left x!)

Booleans

data Bool = False - True
Correspondence

$$
\begin{gathered}
\text { Either () () corresponds to Bool } \\
\text { Left () corresponds to False } \\
\text { Right () corresponds to True }
\end{gathered}
$$

Arithmetic
There are two values False, True : Bool.

$$
1+1=2
$$

Maybe

```
data Maybe a = Nothing | Just a
```

Correspondence

$$
\begin{gathered}
\text { Either Unit a correspond to Maybe a } \\
\text { Left () corresponds to Nothing } \\
\text { Right } x \text { corresponds to Just } x
\end{gathered}
$$

Arithmetic
If there are m values $x: \quad a$, then there are $m+1$ values Nothing, Just $\mathrm{x}:$: Maybe a.

A use of Maybe

Comprehension

```
lookup :: a -> [(a,b)] -> Maybe b
lookup \(x\) xys \(=f\left[y^{\prime} \mid\left(x^{\prime}, y^{\prime}\right)<-x y s, x==x^{\prime}\right]\)
    where
    f [] \(\quad=\) Nothing
    f (y:ys) = Just y
```


Recursion

```
lookup :: a -> [(a,b)] -> Maybe b
lookup x [] = Nothing
lookup x (( }\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime}):xys
    | x == x' = Just x
    | otherwise = lookup x xys
```


Lists

```
data List a = Nil | Cons a (List a)
```

Type
[a] stands for List a

Values

$$
\begin{gathered}
\text { [] stands for Nil } \\
\mathrm{x}: \mathrm{xs} \text { stands for Cons } \mathrm{x} \mathrm{xs}
\end{gathered}
$$

Correspondence

$$
\begin{gathered}
\text { Either () (a, List a) corresponds to List a } \\
\text { Left () corresponds to [] } \\
\text { Right (x,xs) corresponds to } x: x s
\end{gathered}
$$

Naturals

```
data Nat = Z | S Nat
```

Type
Int (often) stands for Nat

Values

$$
\begin{gathered}
0 \text { stands for } \mathrm{Z}-\text { zero } \\
\mathrm{n}+1 \text { stands for } \mathrm{S} \mathrm{n}-\text { successor }
\end{gathered}
$$

Correspondence
Either () Nat corresponds to Nat Left () corresponds to 0
Right n corresponds to $n+1$

Functions

The one data type that is not an algebraic type!
Type

$$
\mathrm{a}->\mathrm{b}
$$

Values

$$
\begin{gathered}
\backslash x \quad->y \\
\text { where } \mathrm{x}
\end{gathered} \mathrm{:} \text { : a and } \mathrm{y}: \mathrm{l} \text { b }
$$

Arithmetic

$$
\begin{gathered}
\text { If there are } m \text { values } \mathrm{x}:: \mathrm{a} \\
\text { and } n \text { values } \mathrm{y}:: \mathrm{b} \\
\text { then there are } n^{m} \text { functions } \backslash \mathrm{x} \rightarrow \mathrm{y}:: \mathrm{a}->\mathrm{b} .
\end{gathered}
$$

Representing functions

Sometimes we represent a function with list of pairs.

```
type Fun \(a b=[(a, b)]\)
nilFun : : a -> b
nilFun \(x=\) undefined
consFun : : (Eq a) \(=>(\mathrm{a}, \mathrm{b}) \rightarrow>(\mathrm{a}->\mathrm{b}) \rightarrow\) ( \(\mathrm{a}->\mathrm{b})\)
consFun \((x, y) f x^{\prime} \mid x==x^{\prime}=y\)
    | otherwise \(=f X^{\prime}\)
convert : : (Eq a) => Fun a b \(->\) ( \(\mathrm{a}->\mathrm{b}\) )
convert xys \(x=\) foldr consFun nilfun xys
```

Observe

```
convert [] = nilFun
convert ((x,y):xys) = consFun (x,y) (convert xys)
```


Representing functions

Remarkably, we have convert $==$ lookUp

```
lookUp :: (Eq a) => Fun a b -> a -> b
lookUp xys \(x=\) the [ \(\left.y \mid\left(x^{\prime}, y\right)<-x y s, x==x^{\prime}\right]\)
    where
    the \([x]=x\)
```


Part III

Arithmetic over Lists

Arithmetic over lists

$$
\begin{aligned}
& (++)::[a]->\text { [a] }->\text { [a] } \\
& {[]++\mathrm{ys}=\mathrm{ys}} \\
& (\mathrm{x}: \mathrm{xs})++\mathrm{ys}=\mathrm{x}:(\mathrm{xs}++\mathrm{ys}) \\
& (* *)::[a]->[b]->[(a, b)] \\
& \mathrm{xS} * * \mathrm{ys}=[(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}<-\mathrm{xS}, \mathrm{y}<-\mathrm{ys}] \\
& \left(\wedge^{\wedge}\right)::[b] \rightarrow[a]->[[(a, b)]] \\
& \mathrm{ys} \wedge \wedge \text { [] }=[[]] \\
& y s \wedge \wedge(x: x s)=\left[(x, y): e \mid y<-y s, e<-y S^{\wedge}{ }^{\wedge} x s\right]
\end{aligned}
$$

Arithmetic over lists, revisited

```
(+++) :: [a] -> [b] -> [Either a b]
[] +++ ys = map Right ys
(x:xs) +++ ys = Left x : (xs +++ ys)
(***) :: [a] -> [b] -> [(a,b)]
[] *** ys = []
(x:xs) *** ys = map f (ys +++ (xs *** ys))
    where
    f (Left y) = (x,y)
    f (Right p) = p
(^^^) :: [b] -> [a] -> [a -> b]
ys^^^ (x:xS) = mapgg(ys*** (ys^^^ xs))
    where
    g (y,e) = consFun (x,y) e
```

