Informatics 1

Functional Programming Lecture 11
Monday 3 November 2008

Map, filter, fold

Philip Wadler
University of Edinburgh

Part 1

Risks to the Public from the Use of Computers

No entry for heavy
goods vehicles.
Residential site only

Nid wyf yn y swyddfa
ar hyn o bryd. Anfonwch

unrhyw waith i'w gyfieithu.

No entry for heavy
goods vehicles.
Residential site only

Nid wyf yn y swyddfa
ar hyn o bryd. Anfonwch

unrhyw waith i'w gyfieithu.

The Welsh reads:
’I am not 1n the office at the moment. Send any work to be translated.”

On Election Day, exit polls commissioned by six leading news
organizations showed Kerry winning handily in four crucial states:

The Final 286
Electoral Count 252

¢o, Florida and Ohio, Since the poll results were beyond What the Polls 174
r, Bush's odds of victory w &5 than ome in 450,000, pPredicted 109

But when the ballots wer ates “flipped” to Bush,
otes - and the White House,

depriving Kerry of fifty-s

7.5% 2.6%
Sproul & Associales, a i
GOP-paid consultancy,
shredded Democratic »
Woler rd'.'ﬂiﬁ!l'.]!i:l!lr'li-.
Electrgnic Sating
machines in the

State's two most pop-
ulouis, Demcratic-
leaning counties
recorded no presi-
dential vate on

10,000 Ballots.

In a race decided by fewer than
; 6,000 votes, New Mexico had the
=.0% highest rate of ballots - 20,000 -

" © that mysteriously registered no
vote for president. Election officials
certified 2,087 “phantom voles™ -
recaording more présidential ballots

0.8% than there wu-nal;mteri.

Too close to call: 55

Kerry

2.6% 5.0%
Some 58.000 ballots
mailed to absentes
woters im Broward
COoUNty Were never
delivered. Thousands
of Floridians were
denied the vote
simply because they
made Inconseguen-
tial errors on thelr
registration forms.

The GOP [liegally targeted black
vaters, attempting to knock 35,000
citizens off the rolls - almost half

in the Democratic stronghald of
Cleveland. Unegual distribution of
voting machines forced black voters
to wealt in lines almast three times
longer than whites.

Was the 2004 Election Stolen? Robert F. Kennedy Jr., Rolling Stone, 1 June 2006.

Part 11

Required reading

Required reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Thompson, Chapters 1-3 (pp. 1-52): by Mon 29 Sep 2008.
Thompson, Chapters 4-5 (pp. 53-95): by Mon 6 Oct 2008.
Thompson, Chapters 67 (pp. 96—134): by Mon 13 Oct 2008.
Thompson, Chapters 8-9 (pp. 135-166): by Mon 20 Oct 2008.
Thompson, Chapters 10—11 (pp. 167-209): by Mon 3 Nov 2008.
Thompson, Chapters 12—14 (pp. 210-241): by Mon 10 Nov 2006.

Thompson and other books available in ITO.

Part 111

Map

Squares

*Main> squares [1,-2, 3]

[1,4,9]

squares :: [Int] —-> [Int]
squares xs = [x*xxXx | x <= x5]
squares :: [Int] —-> [Int]
squares [] =[]

squares (xXx:xXs) = X*xX : sguares XS

Ords

*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] —-> [Int]

ords xXs = [ord x | x <— xXs]
ords :: [Char] —-> [Int]

ords [] =[]

ords (x:xXs) = ord x : ords Xxs

map
map

map
map
map

—> [b]
<- X8]
—> [b]

Squares, revisited

*Main> squares [1,-2, 3]

[1,4,9]
squares :: [Int] —-> [Int]
squares xs = [x*xXx | x <= x5]
squares :: [Int] —-> [Int]
squares [] =[]
squares (xXx:xXs) = X*xX : sguares XS
squares :: [Int] —-> [Int]
squares Xs = map square XS
where

square x = X*X

Ords, revisited

*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] —-> [Int]
ords xXs = [ord x | X
ords :: [Char] —-> [Int]
ords [] =[]

ords (x:xs) = ord x
ords :: [Char] —-> [Int]

ords xs = map ord Xxs

<- xs]

ords XxXs

Part IV

Filter

Positives

*Main> positives [1,-2, 3]

[1,3]

positives :: [Int] —-> [Int]

positives xs = [x | x <= x5, x > 0]

positives :: [Int] —> [Int]

positives [] =[]

positives (x:xs) | x > 0 = X : positives XS

| otherwise = ©positives xs

Digits

*Main> digits "a2c3"

"23"

digits :: [Char] —-> [Char]

digits xs = [x | x <= xs, 1isDigit x]
digits :: [Char] —> [Char]

digits [] =[]

digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

Filter

filter :: (a —> Bool) —> [a] —> [a]

filter p xs = [X | x <= X8, p x]

filter :: (a —-> Bool) —-—> [a] —-> [a]

filter p [] =[]

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Positives, revisited

*Main> positives [1,-2, 3]

[1,3]
positives :: [Int] —-> [Int]
positives xs = [x | x <= x5, x > 0]
positives :: [Int] —> [Int]
positives [] =[]
positives (x:xs) | x > 0 = X : positives XS
| otherwise = ©positives xs
positives :: [Int] —> [Int]
positives xs = filter positive xs
where

positive x = x > 0

Digits, revisited

*Main> digits "a2c3"

"23"

digits :: [Char] —-> [Char]

digits xs = [x | x <= xs, 1isDigit x]

digits :: [Char] —> [Char]

digits [] =[]

digits (x:xs) | 1sDigit x = x : 1isDigit xs
| otherwise = 1sDigit xs

digits :: [Char] —-> [Char]

digits xs = filter isDigit xs

Part V

Map and Filter, together

Squares of Positives

*Main> squarePositives [1,-2, 3]

[1,9]
squarePositives :: [Int] —-> [Int]
squarePositives xs = [x*x | x <= x5, x > 0]
squarePositives :: [Int] —-> [Int]
squarePositives [] =[]
squarePositives (x:xs)
| x > 0 = X*X : squarePositives xs
| otherwise = squarePositives p xs
squarePositives :: [Int] -> [Int]
squarePositives xs = map square (filter positive xs)
where
square X = X*X

positive x = x > 0

Ords of Digits

*Main> ordDigits "a2c3"

[50,51]

ordDigits :: [Char] —-> [Int]

ordDigits xs = [ord x | x <- Xxs, isDigit x]

ordDigits :: [Char] -> [Int]

ordDigits [] =[]

ordDigits (x:xs) | 1sDiglit x = ord x : ordDigits xs
| otherwise = ordDigits p xs

ordDigits :: [Char] —> [Int]

ordDigits xs = map ord (filter isDigit xs)

Part VI

Fold

Sum

*Main> sum [1,2,3,4]
10

sum :: [Int] —-> Int
sum [] = 0
sum (xX:xs) = X 4+ sum XS

Product

*Main> product [1,2, 3, 4]
24

product :: [Int] —-> Int
product [] = 1
product (x:xs) = X * product xs

Concatenate

*Main> concat [[1,2,3],1[4,5]]
[112131415]

*Main> concat ["con", "cat", "en", "ate"]
"concatenate"

concat :: [[a]] —> [a]
concat [] = []
concat (xs:xss) = xXs ++ concat xss

Foldr

foldr
foldr £ a
foldr £ a

(a —> a —>

[]

(x:x8)

a

)
a
f

-> a —> [a] —> a

X

(foldr £ a xs)

Sum, revisited

*Main> sum [1,2,3,4]
10

sum :: [Int] —-> Int

sum [] = 0

sum (xX:xs) = X 4+ sum XS
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

Product, revisited

*Main> product [1,2, 3, 4]

24

product :: [Int] —-> Int

product [] = 1

product (x:xs) = X * product xs
product :: [Int] -> Int

product xs = foldr (%) 1 xs

Concatenate, revisited

*Main> concat [[1,2,3],1[4,5]]
[112131415]

*Main> concat ["con", "cat", "en", "ate"]

"concatenate"

concat :: [[a]] —> [a]

concat [] =[]

concat (xs:xss) = xXs ++ concat xss
concat :: [[a]] —> [a]

concat xss = foldr (++) [] xss

Part VII

Fold, generalised

Reverse

+*Main> reverse [1, 2, 3]
[3,2,1]

*Main> reverse "abc"
11) Cba 11)

reverse :: [a] —> [a]
reverse |[] = []
reverse (xX:xs) = reverse Xs ++ [X]

Insertion Sort

*Main> insert 2 []

[2]

*Main> insert 4 [2]

[2,4]

*Main> insert 1 [2,4]

[1,2,4]

+*Main> insert 3 [1,2,4]

[1,2,3,4]

insert :: Int —> [Int] —-> [Int]

insert x [] =[]

insert x (y:ys) | x > vy = y : 1insert x ys
| otherwise = x : y : VS

+*Main> iSort [3,1,4,6 2]
[1,2,3,4]

iSort :: [Int] —> [Int]
iSort [] =[]
iSort (x:xS) = 1nsert x (iSort xs)

Foldr, generalized

foldr :: (a —> b -> b) -> b -> [a] -—> Db
foldr £ a [] = a
foldr £ a (x:x8) = f x (foldr f a xs)

Reverse, revisited

*Main> reverse [1, 2, 3]
[3,2,1]

*Main> reverse "abc"

11 Cba 11

reverse :: [a] —> [a]

reverse [] =[]

reverse (xXx:xs) = reverse Xs ++ [X]

reverse :: [a] —> [a]

reverse xs = foldr snoc [] xs
where

Snoc X xXxs = xXs ++ [x]

Insertion Sort, revisited

insert :: Int —> [Int] —> [Int]

insert x [] =[]

insert x (y:ys) | x >y = y : 1lnsert x ys
| otherwise = x : y : Vys

«Main> iSort [3,1,4,2]

[1,2,3,4]

iSort :: [Int] —> [Int]

iSort [] =[]

i1Sort (x:x8) = 1nsert x (1iSort xs)
iSort :: [Int] —> [Int]

iSort xs = foldr insert [] xs

takeWhile and dropWhile

takeWhile :: (a —> Bool) —> [a] —> [a]

takeWhile p [] = []

takeWhile p (x:xs) | p X = x : takeWhile p xs
| otherwise = []

dropWhile :: (a —> Bool) —-> [a] —-> [a]

dropWhile p [] = []

dropWhile p (x:xs) | p X = dropWhile p xs
| otherwise = x:xs

x*Main> takeWhile islLower "goodBye"
"gOOd"

x*Main> dropWhile isLower "goodBye"
"Bye "

Insert, revisited

insert :: Int —> [Int] —-> [Int]

insert x ys
= takeWhile xGreater ys ++ [x] ++ dropWhile xGreater ys
where
XGreater v = X >V

