
Informatics 1
Functional Programming Lecture 11

Monday 3 November 2008

Map, filter, fold

Philip Wadler
University of Edinburgh

Part I

Risks to the Public from the Use of Computers

The Welsh reads:
”I am not in the office at the moment. Send any work to be translated.”

The Welsh reads:
”I am not in the office at the moment. Send any work to be translated.”

Was the 2004 Election Stolen? Robert F. Kennedy Jr., Rolling Stone, 1 June 2006.

Part II

Required reading

Required reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Thompson, Chapters 1–3 (pp. 1–52): by Mon 29 Sep 2008.
Thompson, Chapters 4–5 (pp. 53–95): by Mon 6 Oct 2008.
Thompson, Chapters 6–7 (pp. 96–134): by Mon 13 Oct 2008.
Thompson, Chapters 8–9 (pp. 135–166): by Mon 20 Oct 2008.
Thompson, Chapters 10–11 (pp. 167–209): by Mon 3 Nov 2008.
Thompson, Chapters 12–14 (pp. 210–241): by Mon 10 Nov 2006.

Thompson and other books available in ITO.

Part III

Map

Squares

*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

Ords

*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

Map

map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Squares, revisited

*Main> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

squares :: [Int] -> [Int]
squares xs = map square xs
where
square x = x*x

Ords, revisited

*Main> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

ords :: [Char] -> [Int]
ords xs = map ord xs

Part IV

Filter

Positives

*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [x | x <- xs, x > 0]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

Digits

*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [x | x <- xs, isDigit x]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

Filter

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Positives, revisited

*Main> positives [1,-2,3]
[1,3]

positives :: [Int] -> [Int]
positives xs = [x | x <- xs, x > 0]

positives :: [Int] -> [Int]
positives [] = []
positives (x:xs) | x > 0 = x : positives xs

| otherwise = positives xs

positives :: [Int] -> [Int]
positives xs = filter positive xs
where
positive x = x > 0

Digits, revisited

*Main> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [x | x <- xs, isDigit x]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : isDigit xs

| otherwise = isDigit xs

digits :: [Char] -> [Char]
digits xs = filter isDigit xs

Part V

Map and Filter, together

Squares of Positives

*Main> squarePositives [1,-2,3]
[1,9]

squarePositives :: [Int] -> [Int]
squarePositives xs = [x*x | x <- xs, x > 0]

squarePositives :: [Int] -> [Int]
squarePositives [] = []
squarePositives (x:xs)
| x > 0 = x*x : squarePositives xs
| otherwise = squarePositives p xs

squarePositives :: [Int] -> [Int]
squarePositives xs = map square (filter positive xs)
where
square x = x*x
positive x = x > 0

Ords of Digits

*Main> ordDigits "a2c3"
[50,51]

ordDigits :: [Char] -> [Int]
ordDigits xs = [ord x | x <- xs, isDigit x]

ordDigits :: [Char] -> [Int]
ordDigits [] = []
ordDigits (x:xs) | isDigit x = ord x : ordDigits xs

| otherwise = ordDigits p xs

ordDigits :: [Char] -> [Int]
ordDigits xs = map ord (filter isDigit xs)

Part VI

Fold

Sum

*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

Product

*Main> product [1,2,3,4]
24

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

Concatenate

*Main> concat [[1,2,3],[4,5]]
[1,2,3,4,5]

*Main> concat ["con","cat","en","ate"]
"concatenate"

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

Foldr

foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

Sum, revisited

*Main> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

Product, revisited

*Main> product [1,2,3,4]
24

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

product :: [Int] -> Int
product xs = foldr (*) 1 xs

Concatenate, revisited

*Main> concat [[1,2,3],[4,5]]
[1,2,3,4,5]

*Main> concat ["con","cat","en","ate"]
"concatenate"

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

concat :: [[a]] -> [a]
concat xss = foldr (++) [] xss

Part VII

Fold, generalised

Reverse

*Main> reverse [1,2,3]
[3,2,1]

*Main> reverse "abc"
"cba"

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Insertion Sort

*Main> insert 2 []
[2]

*Main> insert 4 [2]
[2,4]

*Main> insert 1 [2,4]
[1,2,4]

*Main> insert 3 [1,2,4]
[1,2,3,4]

insert :: Int -> [Int] -> [Int]
insert x [] = []
insert x (y:ys) | x > y = y : insert x ys

| otherwise = x : y : ys

*Main> iSort [3,1,4,2]
[1,2,3,4]

iSort :: [Int] -> [Int]
iSort [] = []
iSort (x:xs) = insert x (iSort xs)

Foldr, generalized

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

Reverse, revisited

*Main> reverse [1,2,3]
[3,2,1]

*Main> reverse "abc"
"cba"

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

reverse :: [a] -> [a]
reverse xs = foldr snoc [] xs
where
snoc x xs = xs ++ [x]

Insertion Sort, revisited

insert :: Int -> [Int] -> [Int]
insert x [] = []
insert x (y:ys) | x > y = y : insert x ys

| otherwise = x : y : ys

*Main> iSort [3,1,4,2]
[1,2,3,4]

iSort :: [Int] -> [Int]
iSort [] = []
iSort (x:xs) = insert x (iSort xs)

iSort :: [Int] -> [Int]
iSort xs = foldr insert [] xs

takeWhile and dropWhile

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs) | p x = x : takeWhile p xs

| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p (x:xs) | p x = dropWhile p xs

| otherwise = x:xs

*Main> takeWhile isLower "goodBye"
"good"

*Main> dropWhile isLower "goodBye"
"Bye"

Insert, revisited

insert :: Int -> [Int] -> [Int]
insert x ys
= takeWhile xGreater ys ++ [x] ++ dropWhile xGreater ys
where
xGreater y = x > y

