Informatics 1
 Functional Programming Lecture 8 Tuesday 21 October 2008

Class Exam Review

Philip Wadler
University of Edinburgh

Part I

Class exam review

1a

$$
\begin{aligned}
& \text { f : : Char -> Int } \\
& \mathrm{f} x \mid{ }^{\prime} \mathrm{a}^{\prime}<=\mathrm{x} \& \& \mathrm{x}<={ }^{\prime} \mathrm{z}^{\prime}=\operatorname{ord} \mathrm{x}-\operatorname{ord} \mathrm{o}^{\prime} \mathrm{a}^{\prime} \\
& { }^{\prime} \mathrm{A}^{\prime}<=\mathrm{x} \& \& \mathrm{x}<=\mathrm{I}^{\prime} \mathrm{Z}^{\prime}=\operatorname{ord} \mathrm{x}-\mathrm{ord}^{\prime} \mathrm{A}^{\prime} \\
& \text { testla }=\mathrm{f}^{\prime} \mathrm{A}^{\prime}==0 \& \& \mathrm{f}^{\prime} \mathrm{B}^{\prime}==1 \& \& \mathrm{f}^{\prime} \mathrm{Z}^{\prime}==25 \& \& \\
& \mathrm{f}^{\prime} \mathrm{a}^{\prime}==0 \& \& \mathrm{f}^{\prime} \mathrm{b}^{\prime}==1 \& \& \mathrm{f}^{\prime} \mathrm{z}^{\prime}==25
\end{aligned}
$$

Alternative solution

$$
\text { f } \mathrm{x} \text { | isAlpha } \mathrm{x}=\text { ord (toLower } \mathrm{x} \text {) - ord 'a' }
$$

Poor solution

$$
\begin{array}{c|c}
\mathrm{f} x & \mathrm{a}^{\prime}<=\mathrm{x} \& \& \mathrm{x}<=\mathrm{Z}^{\prime}=\text { ord } \mathrm{x}-97 \\
\mathrm{I}^{\prime} \mathrm{A}^{\prime}<=\mathrm{x} \& \& \mathrm{x}<=\mathrm{Z}^{\prime}=\text { ord } \mathrm{x}-65
\end{array}
$$

1b

```
g :: String -> Int
g xs = sum [ f x | x <- xs, isAlpha x ]
test1b = g "aBc4e" == 7 && g "?!" == 0
```


Incorrect solution

```
g :: String -> Int
g xs = [ sum (f x) | x <- xs, isAlpha x ]
```

```
h : : String -> Int
\(h\) [] \(=0\)
\(h(x: x s) \mid\) isAlpha \(x=f x+h x s\)
    | otherwise \(=\mathrm{h} x \mathrm{~s}\)
testlc \(=\) h "aBc4e" == 7 \&\& h "?!" == 0
```


Incorrect solution

h : : String -> Int
$h(x: x s)=f x+h x s$

2a

```
c :: [Int] -> [Int] -> [Int]
c xs ys | length xs == length ys
    \(=\left[\begin{array}{rl}-y & (x, y)\end{array}<-z i p x s y s\right]\)
test2a \(=c[5,7,3][1,2,4]==[4,5,-1]\)
```

Incorrect solution

```
c :: [Int] -> [Int] -> [Int]
c xs ys | length xs == length ys
    = [ x-y | x <- xs, y <- ys ]
```

Main> zip $[1,2,3][4,5,6]$
$[(1,4),(2,5),(3,6)]$
Main> [$(x, y) \mid x<-[1,2,3], y<-[4,5,6]$]
$[(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)]$

2b

```
d :: [Int] -> [Int] -> [Int]
d [] [] = []
d (x:xs) (y:ys) = x-y : d xs ys
test2b = d [5,7,3] [1,2,4] == [4,5,-1]
```


Poor solution

```
d :: [Int] -> [Int] -> [Int]
d [] [] = []
d (x:xs) (y:ys) | length xs == length ys
    = x-y : d xs ys
```

2c

$$
\begin{aligned}
& \text { e :: [Int] -> [Int] -> Bool } \\
& \text { e xs ys = and [} \mathrm{z}==0 \mid \mathrm{z}<-\mathrm{c} \text { xs ys] } \\
& \text { test2c }=\mathrm{e}[3,3,3][3,3,3] \text { \& } \& \\
& \text { not (e }[3,3,3][3,3,2]) \& \& \\
& \text { e [] [] }
\end{aligned}
$$

Alternative solution

$$
\text { e xs ys }=\text { c xs ys }==\text { replicate } 0 \text { (length xs) }
$$

2c
Question 2c assumed (without saying so-a mistake!) that both lists to be compared for equality are the same length. If they may be different lengths, we need to check for this first.

```
e :: [Int] -> [Int] -> Bool
e xs ys = length xs == length ys &&
    and [ z == 0 | z <- c xs ys ]
test2c'=e [3,3,3] [3,3,3] &&
    not (e [3,3,3] [3,3,2]) &&
    not (e [3,3,3] [3,3])
    e [] []
```

