Informatics 1

Functional Programming Lectures 5 and 6 Monday 13 and Tuesday 14 October 2008

More fun with recursion

Philip Wadler
University of Edinburgh

Tutorials

Tutorial 2 due this week.
 Tuesday/Wednesday Computation and Logic
 Thursday/Friday
 Functional Programming

Enter requests for changes into RT system; or visit ITO.
Do tutorials in advance
Bring printouts to the tutorial

Laboratories

Drop-in laboratories:

Mondays	$3-5 \mathrm{pm}$	West
Tuesdays	$2-5 \mathrm{pm}$	West
Wednesdays	$2-5 \mathrm{pm}$	West
Thursdays	$2-5 \mathrm{pm}$	South
Fridays	$3-5 \mathrm{pm}$	West

Required text and reading

Haskell: The Craft of Functional Programming, Second Edition, Simon Thompson, Addison-Wesley, 1999.

Reading assignment:
Thompson, Chapters 1-3 (pp. 1-52): by Mon 29 Sep 2008.
Thompson, Chapters 4-5 (pp. 53-95): by Mon 6 Oct 2008.
Thompson, Chapters 6-7 (pp. 96-134): by Mon 13 Oct 2008.
Thompson, Chapters 8-9 (pp. 135-166): by Mon 20 Oct 2008.

Part I

Booleans and characters

Boolean operators

```
not :: Bool -> Bool
(&&), (||) :: Bool -> Bool -> Bool
not False = True
not True = False
False && False = False
False && True = False
True && False = False
True && True = True
False || False = False
False || True = True
True || False = True
True || True = True
```


Defining operations on characters

```
isLower :: Char -> Bool
isLower x = 'a' <= x && x <= ' z'
isUpper :: Char -> Bool
isUpper x = 'A' <= x && x <= ' Z'
isDigit :: Char -> Bool
isDigit x = '0' <= x && x <= ' ''
isAlpha :: Char -> Bool
isAlpha x = isLower x || isUpper x
```


Defining operations on characters

```
digitToInt :: Char -> Int
digitToInt c | isDigit c = ord c - ord '0'
intToDigit :: Int -> Char
intToDigit d | 0 <= d && d <= 9 = chr (ord '0' + d)
toLower :: Char -> Char
toLower c | isUpper c = chr (ord c - ord 'A' + ord 'a')
    | otherwise = c
toUpper :: Char -> Char
toUpper c | isLower c = chr (ord c - ord 'a' + ord 'A')
    | otherwise = c
```


Part II

Conditionals

Conditional equations

```
max :: Integer -> Integer -> Integer
max x y | x >= Y = x
    | y>=x = y
max3 :: Integer -> Integer -> Integer -> Integer
max3 x y z | x >= y && x >= z = x
    | Y >= X && Y >= Z = Y
    | z >= x && z >= Y = z
```


Conditional equations with otherwise

```
max :: Integer -> Integer -> Integer
max x y | x >= y m = x 
max3 :: Integer -> Integer -> Integer -> Integer
max3 x y z | x >= y && x >= z = x
    | Y >= X && Y >= Z = Y
    | otherwise = z
```


Conditional equations with otherwise

```
max :: Integer -> Integer -> Integer
max x y | x >= Y = x
    | otherwise = y
max3 :: Integer -> Integer -> Integer -> Integer
max3 x y z | x >= y && x >= z = x
    | Y >= x && Y >= z = Y
    | otherwise = z
otherwise :: Bool
otherwise = True
```


Conditional expressions

```
max :: Integer -> Integer -> Integer
max x y = if x >= y then x else y
max3 :: Integer -> Integer -> Integer -> Integer
max3 x y z = if x >= y && x >= z then x
    else if y >= x && y >= z then y
    else z
```


Another way to define max3

```
max3 :: Integer -> Integer -> Integer -> Integer
max3 x y z = if x > = y then
    if x >= z then x else z
    else
    if y >= z then y else z
```


A better way to define max 3

```
max3 :: Integer -> Integer -> Integer -> Integer
max3 x y z = max (max x y) z
```

An even better way to define max 3

```
max3 :: Integer -> Integer -> Integer -> Integer
max3 x y z = x 'max' y 'max' z
```


An even better way to define max3

```
max3 :: Integer -> Integer -> Integer -> Integer
max3 x y z = x 'max' y 'max' z
max :: Integer -> Integer -> Integer
```



```
x + Y stands for (+) x y
x >= Y stands for (>=) x y
x 'max' y standsfor max x y
```


Associativity

```
prop_max_assoc :: Integer -> Integer -> Integer -> Bool
prop_max_assoc x y z =
    (x 'max' y) 'max' z == x `max' (y `max' z)
```

When using an infix function that is not associative, best to write in all the parentheses!

Why we use infix notation

```
prop_max_assoc :: Integer -> Integer -> Integer -> Bool
prop_max_assoc x y z =
    max (max x y) z == max x (max y z)
```

This is much harder to read than infix notation!

Part III

Sum and Product

Sum

```
sum :: [Integer] -> Integer
sum [] = 0
sum (x:xs) = x + sum xs
    sum [1,2,3]
=
    sum (1 : (2 : (3 : [])))
=
    1 + sum (2 : (3: []))
=
    1 + (2 + sum (3 : []))
=
    1+(2+(3+sum []))
=
    1+(2+(3+0))
=
    6
```


Product

```
product :: [Integer] -> Integer
product [] = 1
product (x:xs) = x * product xs
= product [1,2,3]
=
    1 * product (2 : (3 : []))
=
    1 * (2 * product (3 : []))
=
    1 * (2 * (3 * product []))
=
    1 * (2 * (3 * 1))
=
    6
```


Odd squares

```
Main*> oddSquares [1,2,3]
[1,9]
```

Comprehension

```
oddSquares :: [Integer] -> [Integer]
oddSquares xs = [ x*x | x <- xs, odd x ]
```

Recursion

```
oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs
    | otherwise = oddSquares xs
```


How recursion works-oddSquares

```
oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs
                            | otherwise = oddSquares xs
```

```
    oddSquares [1,2,3]
```

 oddSquares [1,2,3]
 =
=
oddSquares (1 : (2 : (3 : [])))
oddSquares (1 : (2 : (3 : [])))
=
=
1*1 : oddSquares (2 : (3 : []))
1*1 : oddSquares (2 : (3 : []))
=
=
1*1 : oddSquares (3 : [])
1*1 : oddSquares (3 : [])
=
=
1*1 : (3*3 : oddSquares [])
1*1 : (3*3 : oddSquares [])
=
=
1*1 : (3*3 : [])
1*1 : (3*3 : [])
=
=
1 : (9 : [])
1 : (9 : [])
=
=
[1, 9]

```
    [1, 9]
```


Sum odd squares

```
Main*> sumOddSquares [1,2,3]
```

Comprehension and library function

```
sumOddSquares :: [Integer] -> Integer
sumOddSquares xs = sum [ x*x | x <- xs, odd x ]
```

Recursion

```
sumOddSquares :: [Integer] -> Integer
sumOddSquares [] = 0
sumOddSquares (x:xs) | odd x = x*x + sumOddSquares xs
| otherwise = sumOddSquares xs
```


How recursion works-sumOddSquares

```
sumOddSquares :: [Integer] -> Integer
sumOddSquares [] = 0
sumOddSquares (x:xs) | odd x = x*x + sumOddSquares xs
                            | otherwise = sumOddSquares xs
    sumOddSquares [1,2,3]
=
    sumOddSquares (1 : (2 : (3 : [])))
=
    1*1 + sumOddSquares (2 : (3 : []))
=
    1*1 + sumOddSquares (3 : [])
=
    1*1 + (3*3 + sumOddSquares [])
=
    1*1 + (3*3 + 0)
=
    1 + (9 + 0)
=
        1 0
```


Upto

$$
\begin{aligned}
& \text { Prelude upto } 13 \\
& {[1,2,3]}
\end{aligned}
$$

Library function

$$
\begin{aligned}
& \text { upto :: Integer -> Integer -> [Integer] } \\
& \text { upto } \mathrm{m} \mathrm{n}=\text { [m..n] }
\end{aligned}
$$

Recursion

```
upto :: Integer -> Integer -> [Integer]
upto m n | m > n = []
    | m <= n = m: upto (m+1) n
```

How recursion works-upto

```
upto :: Integer -> Integer -> [Integer]
upto m n | m > n = []
    | m <= n = m: upto (m+1) n
    upto 1 3
=
    1 : upto 2 3
=
    1: (2 : upto 3 3)
=
    1:(2 : (3 : upto 4 3))
=
    1 : (2 : (3 : [] ) )
=
    [1,2,3]
```


Factorial

Main*> factorial 3

Library functions

```
factorial :: Integer -> Integer
factorial n = product [1..n]
```


Recursion

```
factorial :: Integer -> Integer
factorial n = fact 1 n
    where
    fact :: Integer -> Integer -> Integer
    fact m n | m > n = 1
        | m<= n = m* fact (m+1) n
```


How recursion works-factorial

```
factorial :: Integer -> Integer
factorial n = fact 1 n
    where
    fact :: Integer -> Integer -> Integer
    fact m n | m > n = 1
        | m<= n = m* fact (m+1) n
        factorial 3
=
        fact 1 3
=
    1 * fact 2 3
=
    1 * (2 * fact 3 3)
=
    1 * (2* (3* fact 4 3))
=
    1 * (2 * (3 * 1))
=
    6
```


Part IV

Append, zip, search

Append

$$
\begin{aligned}
& \text { (++) :: [a] -> [a] -> [a] } \\
& \text { [] ++ ys = ys } \\
& \text { (x:xs) ++ ys = } x:(x s++y s) \\
& \text { "abc" ++ "de" } \\
& = \\
& \text { ('a' : ('b' : (' } \left.{ }^{\prime} \text { : []))) ++ (' } \mathrm{d}^{\prime}:\left(\mathrm{e}^{\prime}:[]\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 'a' : (('b' : ('c' : [])) ++ ('d' : ('e' : []))) } \\
& = \\
& \text { ' } a^{\prime}:\left(\prime b^{\prime}:\left(\left(\prime c^{\prime}:[]\right)++\left(\prime d^{\prime}:\left(\prime e^{\prime}:[]\right)\right)\right)\right) \\
& \left.=\quad \text { 'a' : ('b' : (' } c^{\prime}:\left([]++\left(\prime d^{\prime}:\left(\prime e^{\prime}:[]\right)\right)\right)\right) \\
& = \\
& \text { ' } a^{\prime}:\left(\prime b^{\prime}:\left(c^{\prime}:\left(\prime d^{\prime}:\left(\prime e^{\prime}:[]\right)\right)\right)\right. \\
& = \\
& \text { "abcde" }
\end{aligned}
$$

Zip

$$
\begin{aligned}
& \text { zip : : [a] }->\text { [b] }->[(a, b)] \\
& \text { zip [] yo }=\text { [] } \\
& \text { zip (x:xs) [] }=\text { [] } \\
& \text { zip (x:xs) (y:ys) }=(x, y): \quad z i p x s y s \\
& \text { zip }[0,1,2] \text { "abc" } \\
& = \\
& \operatorname{zip}(0:(1:(2:[])))\left({ }^{\prime} a^{\prime}:\left({ }^{\prime} b^{\prime}:\left({ }^{\prime} c^{\prime}:[]\right)\right)\right) \\
& =\left(0,{ }^{\prime} \mathrm{a}^{\prime}\right): \operatorname{zip}(1:(2:[]))\left({ }^{\prime} \mathrm{b}^{\prime}: \quad\left({ }^{\prime} \mathrm{c}^{\prime}:[]\right)\right) \\
& =\left(0, a^{\prime}\right):\left(\left(1,{ }^{\prime} b^{\prime}\right): \operatorname{zip}(2:[]) \quad\left({ }^{\prime} c^{\prime}:[]\right)\right) \\
& =\left(0,{ }^{\prime} a^{\prime}\right):\left(\left(1, \prime^{\prime} b^{\prime}\right):\left(\left(2,^{\prime} c^{\prime}\right): \operatorname{zip}[][]\right)\right) \\
& =\left(0, \mathrm{a}^{\prime}\right):\left(\left(1,{ }^{\prime} \mathrm{b}^{\prime}\right):\left(\left(2, \mathrm{c}^{\prime}\right):[]\right)\right) \\
& = \\
& {\left[\left(0,{ }^{\prime} a^{\prime}\right),\left(1,{ }^{\prime} \mathrm{b}^{\prime}\right),\left(2,^{\prime} \mathrm{C}^{\prime}\right)\right]}
\end{aligned}
$$

Two definitions of zip

Shorter

$$
\begin{array}{rlrl}
\operatorname{zip}::[a]->[b] & -> & {[(a, b)]} \\
\operatorname{zip}[] \text { ys } & =[] \\
\operatorname{zip}(x: x s)[] & & {[]} \\
\operatorname{zip}(x: x s)(y: y s) & =(x, y): \operatorname{zip} x s \text { ys }
\end{array}
$$

Longer

$$
\begin{array}{rlrl}
\operatorname{zip}::[a]->[b] & -> & {[(a, b)]} \\
\operatorname{zip}[][] & & =[] \\
\operatorname{zip}[](y: y s) & & =[] \\
\operatorname{zip}(x: x s)[] & =[] \\
\operatorname{zip}(x: x s)(y: y s) & =(x, y): \text { zip xs ys }
\end{array}
$$

More fun with zip

```
Prelude> zip [0,1,2] "abc"
[(0,' a'),(1,'b'),(2,'c')]
Prelude> zip [0,1,2] "abcde"
[(0,' a'),(1,'b'),(2,'c')]
Prelude> zip [0,1,2,3,4] "abc"
[(0,' a'),(1,'b'),(2,'c')]
Prelude> zip [0..] "words"
[(0,' w'),(1,'O'),(2,'r'),(3,' d'),(4,' S')]
Prelude> let pairs xs = zip xs (tail xs)
Prelude> pairs "words"
[(' W','O'),('O','r'), ('r',' ('),(' d',' S')]
```

Zip with an infinite list

$$
\begin{aligned}
& \text { zip :: [a] -> [b] -> [(a,b)] } \\
& \text { zip [] ys }=\text { [] } \\
& \text { zip (x:xs) [] }=\text { [] } \\
& \text { zip (x:xs) (y:ys) }=(x, y) \text { : zip xs ys } \\
& \text { zip [0..] "abc" } \\
& = \\
& \text { zip [0..] ('a' : ('b' : ('c' : []))) } \\
& =\left(0, \prime a^{\prime}\right): \operatorname{zip}[1 \ldots]\left(b^{\prime}:\left(\prime c^{\prime}:[]\right)\right) \\
& =\left(0, a^{\prime}\right):\left(\left(1,{ }^{\prime} b^{\prime}\right): \operatorname{zip}[2 \ldots]\left(\mathrm{c}^{\prime}:[]\right)\right) \\
& =\left(0, a^{\prime}\right):\left(\left(1, \prime^{\prime} b^{\prime}\right):\left(\left(2,^{\prime} c^{\prime}\right): \operatorname{zip}[3 \ldots][]\right)\right) \\
& =\left(0,{ }^{\prime} a^{\prime}\right):\left(\left(1, \prime^{\prime} b^{\prime}\right):\left(\left(2,^{\prime} c^{\prime}\right):[]\right)\right) \\
& = \\
& {\left[\left(0, ' a^{\prime}\right),\left(1, b^{\prime}\right),\left(2,^{\prime} c^{\prime}\right)\right]}
\end{aligned}
$$

Search

```
Main*> search "bookshop" 'o'
[1,2,6]
```

Comprehensions and library functions

```
search :: [a] -> a -> [Int]
search xs y = [ i | (i,x) <- zip [0..] xs, x==y ]
```

Recursion

```
search :: [a] -> a -> [Int]
search xs y = search' xs y 0
    where
    search' :: [a] -> a -> Int -> [Int]
    search' [] y i = []
    search' (x:xs) y i
    | x == y = i : search' xs y (i+1)
    | otherwise = search' xs y (i+1)
```

How search works

```
search :: [a] -> a -> [Int]
search xs y = search' xs y 0
    where
    search' :: [a] -> a -> Int -> [Int]
    search' [] y i = []
    search' (x:xs) y i
        | x == y = i : search' xs y (i+1)
            | otherwise = search' xs y (i+1)
    search "book" 'o'
=
    search' ('b': ('O' : ('o' : ('k' : [])))) 'o' 0
=
    search' ('o' : ('o' : ('k' : []))) 'o' 1
=
    1 : search' ('o' : ('k' : [])) 'o' 2
=
    1 : (2 : search' ('k' : []) 'o' 3)
=
    1 : (2 : search' [] '0' 4)
=
    1 : (2 : [])
=
    [1,2]
```


Part V

Select, take, and drop

Select, take, and drop

```
Prelude> "words" !! 3
'd'
Prelude> take 3 "words"
"wor"
Prelude> drop 3 "words"
"ds"
```


Select

```
Prelude> "words" !! 3
'd'
```

Comprehension

```
(!!) : : [a] \(->\) Int \(->\) a
xs !! \(n=\) the \([x \mid(i, x)<-\operatorname{zip}[0 \ldots] x s, i==n]\)
    where
    the \([\mathrm{x}]=\mathrm{x}\)
```

Recursion

```
(x:xs) !! 0 = x
(x:xs) !! n | n > 0 = xs !! (n-1)
```


Take

```
Prelude> take 3 "words"
"wor"
```

Comprehension

```
take :: Int -> [a] -> [a]
take n xs = [ x | (i,x) <- zip [0..] xs, i < n ]
```

Recursion

```
take :: Int -> [a] -> [a]
take 0 xs \(=\) []
take n [] | \(\mathrm{n}>0\) = []
take \(n(x: x s) \mid n>0=x\) : take ( \(n-1\) ) \(x s\)
```


How take works

```
take :: Int -> [a] -> [a]
take 0 xs = []
take n [] | n > 0 = []
take n (x:xs) | n > 0 = x : take (n-1) xs
take 3 "word"
=
    take 3 ('w':('o':('r':('d':('s':[])))))
=
    'w' : take 2 ('o':('r':('d':('s':[]))))
=
    'w' : ('o' : take 1 ('r':('d':('s':[]))))
=
    'w' : ('O' : ('r' : (take 0 ('d':('s':[])))))
=
    'w' : ('o' : ('r' : []))
=
    "wor"
```


Natural numbers

A natural number is

- Zero, written 0, or
- The successor of a natural number, written $n+1$, where n is a natural number

$$
\begin{aligned}
& =((0+1)+1)+1 \\
& =2+1 \\
& =1+1 \\
& =0+1
\end{aligned}
$$

Select and take, two ways

Guards

```
(x:xs) ! ! \(0=0\)
( \(x: x s)!!n \quad \mid n>0=x s!!(n-1)\)
take 0 xs \(=\) []
take n [] | \(\mathrm{n}>0=0\) []
take \(n(x: x s) \mid n>0=x: \operatorname{take}(n-1) x s\)
```

$n+1$ patterns

```
(x:xs) ! ! \(0=x\)
(x:xs) ! ! (n+1) \(=x s!!n\)
take 0 xs \(=\) []
take \((\mathrm{n}+1)\) [] \(=\) []
take \((n+1)(x: x s)=x:\) take \(n x s\)
```

How take works, reprise

```
take :: Int -> [a] -> [a]
take 0 xs = []
take (n+1) [] = []
take (n+1) (x:xs) = x : take n xs
take 3 "words" 
```


Arithmetic

$$
\begin{aligned}
& \text { (+) : : Integer -> Integer -> Integer } \\
& \mathrm{m}+0=\mathrm{m} \\
& m+(n+1)=(m+n)+1 \\
& \text { (*) : : Integer -> Integer -> Integer } \\
& m * 0=0 \\
& m *(n+1)=(m * n)+m \\
& \begin{array}{ccc}
(\wedge) & : & \text { Integer } \rightarrow \text { Integer } \rightarrow \text { Integer } \\
m & 0 & =1
\end{array} \\
& m \text { ^ } 0=1 \\
& m^{\wedge}(n+1)=(m \wedge n) \star m
\end{aligned}
$$

