Informatics 1

Functional Programming Lectures 3 and 4
Monday 6 and Tuesday 7 October 2006

[Lists and Recursion

Philip Wadler
University of Edinburgh

Tutorials

Tutorials start this week!

Tuesday/Wednesday Computation and Logic

Thursday/Friday Functional Programming
Enter requests for changes into RT system; or visit ITO.

Do tutorials in advance

Bring printouts to the tutorial

I_aboratories

Drop-in laboratories:

Mondays
Tuesdays
Wednesdays
Thursdays
Fridays

Did you do your Lab Week Exercise?

3—-5pm
2-5pm
2-5pm
2-5pm
3-5pm

West
West
West
South
West

Required text and reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Reading assignment:

Thompson, Chapters 1-3 (pp. 1-52): by Mon 29 Sep 2008.
Thompson, Chapters 4-5 (pp. 53-95): by Mon 6 Oct 2008.
Thompson, Chapters 67 (pp. 96—134): by Mon 13 Oct 2008.

Blackwells has confirmed they will take back textbooks.

Part 1

List comprehensions

List comprehensions — Generators

Prelude> [x*x | x <= [0..5]]
[0,1,4,9,16,25]

Prelude> [Char.tolower ¢ | ¢ <— "Hello, World!"]
"hello, world!"

Prelude [(x, even x) | x <= [0..5]]
[(O, True), (1,False), (2,True), (3,False), (4,True), (5,False)]

x <— [0..5] iscalled a generator

<— 1s pronounced drawn from

List comprehensions — Guards

Prelude> [x*x | x <= [0..5], even x]
[0,4,16]

Prelude> [x*xx | x <= [0..5], x*x < 10]
[0,1,4,9]

Prelude> [Char.tolower ¢ | ¢ <-— "Hello, World!'",

Char.isAlpha c]
"helloworld"

even x 1scalled a guard

List comprehensions — Multiple generators

Prelude> [(x,y) | <- [0..2], y <= [0..3]1 1

[(0,0), (0,1), (0,2)
(1,0), (1,1), (1,2),
(2,0),((2,1), (2,2)

Prelude> [(x,Yy)

|X<— [0 2]ry<— [0°°3]IX<Y]
[(0,1), (0,2), (0,3), (1

r2), (1,3),(2,3)]

Prelude> [(x,y)

| x <= [0..2], y <— [x+1..3]]
[(O0,1), (0,2), (0,3), (1

y2), (1,3),(2,3)]

Prelude> [(x,vy,z) | x <- [1..10],

y <- [x+1..10],

z <— [1..10],

X*X + y*y == zxz]
[(3,4,5), (6,8,10)]

Sum, Product

Prelude> sum [1,2,3,4]
10

Prelude> sum []
0

Prelude> sum [x*x | x <= [1,2,3,4]]
30

Prelude> product [1,2, 3, 4]
24

Prelude> product []
1

Prelude> let factorial n = product [1l..n]
Prelude> factorial 4
24

Part 11

[ists and Recursion

Lists

A list 1s either
e null, written [], or

e constructed, written x : xs, with head x (an element), and tail xs (a list).

[(1,2,3] = 1 : (2 : (3 : []))
[1,2,31 = 1 : [2,3] —— head i1is 1, tail is [2, 3]
[2, 3] = 2 : [3] —— head 1is 2, tail is [3]
[3] = 3 : [] —— head 1s 3, tail is []
[] —— null
"list™" — [’l’,’i’,’S’,’t’]

= 117 ("1’ ("s’ ("t’ [1)))
"list" = 717 : "ist" —— head is ’"1’, tail is "ist"
"ist" = i’ : "st" —— head 1s ’"1’, tail is "st"
"st" = rfgf o o"g" —— head 1is ’'s’, tail is "t"
"t" — Itl : mwmw _ head j_S Itl , tail j_S mww

nn —— null

Cons and append

Operator (:) is pronounced cons, for construct.
Operator (++) is pronounced append.

(:) o a —> [a] —> [a]

(++) :: [a] —-> [a] —> [a]

1 [2, 3] = [1,2,3]

[1] ++ [2, 3] = [1,2,3]

[1,2] ++ [3] = [1,2,3]

717 . "ist" = "list"

"1i" +4+ "st" = "list"

[1] : [2,3] —-— type error!
1 ++ [2,3] —-— type error!
[1,2] ++ 3 —-— type error!
"1" . "ist" -— type error!
717 +4+ "ist" —— type error!

Cons takes an element and a list.
Append takes two lists.

Two styles of definition—squares

Mainx> squares [1,2, 3]
[1,4,9]
Comprehension

squares :: [Integer] —-> [Integer]
sgquares Xs = [X*xX | x <= xs]

Recursion

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (x:xs) = X%X : squares XS

How recursion works—squares

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (xX:Xs) = X*X : sguares XS

squares [1,2,3]

How recursion works—squares

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (xX:Xs) = X*X : sguares XS

squares [1,2,3]

squares (1 : (2 : (3 : [1)))

How recursion works—squares

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (xXx:xXxs) = X*xX : sguares XS

squares [1,2,3]

squares (1 : (2 : (3 = [])
= { x =1, xs = (2 : (3
1x1 : squares (2 : (3 : []

How recursion works—squares

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (xXx:xXxs) = X*xX : sguares XS

squares [1,2,3]
squares (1 : (2 : (3 : [1)))
1x1 : squares (2 : (3 : []))

— { x =2, xs = (3 : []) }
1x1 : (2%2 : squares (3 : [1))

How recursion works—squares

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (xXx:xXxs) = X*xX : sguares XS

squares [1,2,3]

squares (1 : (2 : (3 : [1)))
1x1 : sgquares (2 : (3 : []1))
1x1 : (2%2 : squares (3 : [1))

= { x = 3, xs = [] }
1x1 : (2x2 : (3%3 : squares []))

How recursion works—squares

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (xX:xXs) = X*X : sguares XS

squares [1,2,3]

squares (1 : (2 : (3 : [1)))

1x1 : sgquares (2 : (3 : []1))

1x1 : (2%2 : squares (3 : [1))
1x1 : (2%2 : (3%3 : squares []))

1«1 : (2%2 : (3%x3 : [1))

How recursion works—squares

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (xX:Xs) = X*X : sguares XS

squares [1,2,3]

squares (1 : (2 : (3 : [1)))

1x1 : sgquares (2 : (3 : []1))

1x1 : (2%x2 : squares (3 : [1))
1x1 : (2%2 : (3%3 : squares []))

1«1 : (2%2 : (3%x3 : [1))

How recursion works—squares

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (xX:Xs) = X*X : sguares XS

squares [1,2,3]

squares (1 : (2 : (3 : [1)))

1x1 : sgquares (2 : (3 : []1))

1x1 : (2%x2 : squares (3 : [1))
1x1 : (2%2 : (3%3 : squares []))
1+x1 : (2%2 : (3*%3 : [1))

1+ (4 : (9 : [1))

[1,4,9]

How recursion works—squares

squares :: [Integer] —-> [Integer]
squares [] =[]
squares (xX:Xs) = X*X : sguares XS

squares [1,2,3]

squares (1 : (2 : (3 : [1)))

1x1 : sgquares (2 : (3 : []1))

1x1 : (2%x2 : squares (3 : [1))
1x1 : (2%2 : (3%3 : squares []))
1«1 @ (2%2 : (3*%3 : [1))

1+ (4 : (9 : [1))

[1,4,9]

Two styles of definition—odds

Main*> odds [1, 2, 3]

[1,3]
Comprehension

odds [Integer] —-> [Integer]

odds xs = [X | X <= xs, odd x]
Recursion

odds :: [Integer] —> [Integer]

odds [] =[]

odds (x:xs) | odd x = X : odds xs

otherwise

odds xs

How recursion works—odds

odds [Integer] —-> [Integer]
odds [] =[]
odds (x:xs) | odd x = X : odds xs
| otherwise = odds xs
odds [1,2, 3]

How recursion works—odds

odds :: [Integer] —> [Integer]

odds [] =[]

odds (x:xs) | odd x = X : odds xs
| otherwise = odds xs

odds [1,2, 3]

odds (1 : (2 : (3 : []1)))

How recursion works—odds

odds :: [Integer] —> [Integer]

odds [] =[]

odds (x:xs) | odd x = X : odds xs
| otherwise = odds xs

odds [1,2, 3]

odds (1 : (2 (3 ¢ [
1 s = (2 : (3 : []1)), odd 1 = True }
3 :]

How recursion works—odds

odds :: [Integer] —> [Integer]

odds [] =[]

odds (x:xs) | odd x = X : odds xs
| otherwise = odds xs

odds [1,2, 3]
odds (1 : (2 : (3 : []1)))
1 : odds

(3 []
= { x =2, xs = (3 : []), odd 2 = False }
1 : odds (]

How recursion works—odds

odds [Integer] —-> [Integer]
odds [] =[]
odds (x:xs) | odd x = X : odds xs
| otherwise = odds xs
odds [1,2, 3]
odds (1 (2 (3 [1)))
1 : odds (2 (3 [1))
1 : odds (3 [1)
= { x = 3, xs =[], odd 3 = True }
1 (3 : odds [])

How recursion works—odds

odds :: [Integer] —> [Integer]

odds [] =[]

odds (x:xs) | odd x = X : odds xs
| otherwise = odds xs

odds [1,2, 3]

odds (1 : (2 : (3 : []1)))

1 : odds (2 : (3 : []))

1 : odds (3 : [1])

1 : (3 : odds [])

1 : (3 : [])

How recursion works—odds

odds :: [Integer] —> [Integer]

odds [] =[]

odds (x:xs) | odd x = X : odds xs
| otherwise = odds xs

odds [1,2, 3]

odds (1 : (2 : (3 : []1)))

1 : odds (2 : (3 : []))

1 : odds (3 : [1])

1 : (3 : odds [])

How recursion works—odds

odds :: [Integer] —> [Integer]

odds [] =[]

odds (x:xs) | odd x = X : odds xs
| otherwise = odds xs

odds [1,2, 3]

odds (1 : (2 : (3 : []1)))

1 : odds (2 : (3 : []))

1 : odds (3 : [1])

1 : (3 : odds [])

Two styles of definition—oddSquares

Mainx> oddSquares [1, 2, 3]
[1,9]

Comprehension

Recursion

Two styles of definition—oddSquares

Mainx> oddSquares [1, 2, 3]

[1,9]

Comprehension

oddSquares
oddSquares

Recursion

oddSquares
oddSquares
oddSquares

[Integer] —-> [Integer]
Xs = [x*x | X <= xs, odd x |
:: [Integer] —-> [Integer]
[] =[]
(x:xs) | odd x X*xX : oddSquares xs
| otherwise = oddSquares xs

How recursion works—oddSquares

oddSquares [Integer] —> [Integer]

oddSquares [] = []

oddSquares (x:xs) | odd x = X*X : oddSquares xs
| otherwise = oddSquares xs

oddSquares

[1,2,3]

How recursion works—oddSquares

oddSquares :: [Integer] —-> [Integer]

oddSquares [] = []

oddSquares (x:xs) | odd x = X*X : oddSquares xs
| otherwise = oddSquares xs

oddSquares [1,2, 3]

oddSquares (1 : (2 : (3 : []1)))

How recursion works—oddSquares

oddSquares :: [Integer] —-> [Integer]

oddSquares [] = []

oddSquares (x:xs) | odd x = X*X : oddSquares xs
| otherwise = oddSquares xs

oddSquares [1,2, 3]

oddSquares (1 : (2 : (3 : []1)))
= { x=1, xs = (2 : (3 : [])), odd 1 = True }
1«1 : oddSquares (2 : (3 : [1))

How recursion works—oddSquares

oddSquares :: [Integer] —-> [Integer]

oddSquares [] = []

oddSquares (x:xs) | odd x = X*X : oddSquares xs
| otherwise = oddSquares xs

oddSquares [1,2, 3]

oddSquares (1 : (2 : (3 : []1)))
1x1 : oddSquares (2 : (3 : [1))
= { x =2, xs = (3 : []), odd 2 = False }

1x1 : oddSquares (3 : [])

How recursion works—oddSquares

oddSquares :: [Integer] —-> [Integer]

oddSquares [] = []

oddSquares (x:xs) | odd x = X*X : oddSquares xs
| otherwise = oddSquares xs

oddSquares [1,2, 3]

oddSquares (1 : (2 : (3 : [1)))
1x1 : oddSquares (2 : (3 : [1))
1x1 : oddSquares (3 : [])

= { x = 3, xs =[], odd 3 = True }
1x1 : (3*x3 : oddSquares [])

How recursion works—oddSquares

oddSquares :: [Integer] —-> [Integer]

oddSquares [] = []

oddSquares (x:xs) | odd x = X*X : oddSquares xs
| otherwise = oddSquares xs

oddSquares [1,2, 3]

oddSquares (1 : (2 : (3 : []1)))
1x1 : oddSquares (2 : (3 : [1))
1x1 : oddSquares (3 : [])

1x1 : (3*x3 : oddSquares [])

1«1 : (3%*3 : [])

How recursion works—oddSquares

oddSquares :: [Integer] —-> [Integer]

oddSquares [] = []

oddSquares (x:xs) | odd x = X*X : oddSquares xs
| otherwise = oddSquares xs

oddSquares [1,2, 3]

oddSquares (1 : (2 : (3 : []1)))
1x1 : oddSquares (2 : (3 : [1))
1x1 : oddSquares (3 : [])

1x1 : (33 : oddSquares [])

1«1 @ (3%3 : [])

1 : (9 : [])

How recursion works—oddSquares

oddSquares :: [Integer] —-> [Integer]

oddSquares [] =[]

oddSquares (x:xs) | odd x = XxX*xxX : oddSquares Xxs
| otherwise = oddSquares xs

oddSquares [1,2, 3]
oddSquares (1 : (2 : (3 : [])))
1x1 : oddSquares (2 : (3 : [1))

1x1 : oddSquares (3 : [])

1«1 : (3%*3 : oddSquares [])
1«1 : (3*3 : [1)
1 (9 « [1)

How recursion works—oddSquares

oddSquares :: [Integer] —-> [Integer]

oddSquares [] =[]

oddSquares (x:xs) | odd x = XxX*xxX : oddSquares Xxs
| otherwise = oddSquares xs

oddSquares [1,2, 3]
oddSquares (1 : (2 : (3 : [])))
1x1 : oddSquares (2 : (3 : [1))

1x1 : oddSquares (3 : [])

1«1 : (3%*3 : oddSquares [])
1«1 : (3*3 : [1)
1 (9 « [1)

Definition by pattern matching

null :: [a] —-> Bool
null [] = True
null (x:xs) = False
head :: [a] —> a

head (x:xs8) = X
tail :: [a] —-> [a]

tail (x:x8) = XS

How definition by pattern matching works—null

null :: [a] —-> Bool
null [] = True
null (x:xs) = False

null []

How definition by pattern matching works—null

null :: [a] —> Bool

null [] = True

null (x:xs) = False
null T[]

True

How definition by pattern matching works—null

null :: [a] —> Bool

null [] = True

null (x:xs) = False
null T[]

True

How definition by pattern matching works—null

null :: [a] —-> Bool
null [] = True
null (x:xs) = False

null [1,2,3]

How definition by pattern matching works—null

null :: [a] —-> Bool
null [] = True
null (x:xs) = False

null [1,2,3]

null (1 : (2 ¢ (3 ¢ [])))

How definition by pattern matching works—null

null :: [a] —-> Bool
null [] = True
null (x:xs) = False

null [1,2,3]

null (1 (2 + (3 = [1)))
= { x=1, xs = (2 ¢+ (3 « [])) }
False

How definition by pattern matching works—null

null :: [a] —-> Bool
null [] = True
null (x:xs) = False

null [1,2,3]

null (1 : (2 ¢ (3 ¢ [])))

False

How definition by pattern matching works—head

head :: [a] —> a
head (x:x38) = X

head [1,2, 3]

How definition by pattern matching works—head

head :: [a] —> a
head (x:x38) = X

head [1,2, 3]

head (1 : (2 : (3 : [1)))

How definition by pattern matching works—head

head :: [a] —> a
head (x:x8) = X

head [1,2, 3]
head (2« (3 = [1)))

(1
= { x =1, xs = (2 ¢« (3 : [])) }
1

How definition by pattern matching works—head

head :: [a] —> a
head (x:x38) = X

head [1,2, 3]
head (1 : (2 : (3 : [1)))

1

