
Informatics 1
Functional Programming Lectures 3 and 4

Monday 6 and Tuesday 7 October 2006

Lists and Recursion

Philip Wadler
University of Edinburgh

Tutorials

Tutorials start this week!

Tuesday/Wednesday Computation and Logic

Thursday/Friday Functional Programming

Enter requests for changes into RT system; or visit ITO.

Do tutorials in advance
Bring printouts to the tutorial

Laboratories

Drop-in laboratories:

Mondays 3–5pm West

Tuesdays 2–5pm West

Wednesdays 2–5pm West

Thursdays 2–5pm South

Fridays 3–5pm West

Did you do your Lab Week Exercise?

Required text and reading

Haskell: The Craft of Functional Programming, Second Edition,
Simon Thompson, Addison-Wesley, 1999.

Reading assignment:

Thompson, Chapters 1–3 (pp. 1–52): by Mon 29 Sep 2008.
Thompson, Chapters 4–5 (pp. 53–95): by Mon 6 Oct 2008.
Thompson, Chapters 6–7 (pp. 96–134): by Mon 13 Oct 2008.

Blackwells has confirmed they will take back textbooks.

Part I

List comprehensions

List comprehensions — Generators

Prelude> [x*x | x <- [0..5]]
[0,1,4,9,16,25]

Prelude> [Char.toLower c | c <- "Hello, World!"]
"hello, world!"

Prelude [(x, even x) | x <- [0..5]]
[(0,True),(1,False),(2,True),(3,False),(4,True),(5,False)]

x <- [0..5] is called a generator

<- is pronounced drawn from

List comprehensions — Guards

Prelude> [x*x | x <- [0..5], even x]
[0,4,16]

Prelude> [x*x | x <- [0..5], x*x < 10]
[0,1,4,9]

Prelude> [Char.toLower c | c <- "Hello, World!",
Char.isAlpha c]

"helloworld"

even x is called a guard

List comprehensions — Multiple generators

Prelude> [(x,y) | x <- [0..2], y <- [0..3]]
[(0,0),(0,1),(0,2),(0,3),
(1,0),(1,1),(1,2),(1,3),
(2,0),(2,1),(2,2),(2,3)]

Prelude> [(x,y) | x <- [0..2], y <- [0..3], x < y]
[(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)]

Prelude> [(x,y) | x <- [0..2], y <- [x+1..3]]
[(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)]

Prelude> [(x,y,z) | x <- [1..10],
y <- [x+1..10],
z <- [1..10],
x*x + y*y == z*z]

[(3,4,5),(6,8,10)]

Sum, Product

Prelude> sum [1,2,3,4]
10

Prelude> sum []
0

Prelude> sum [x*x | x <- [1,2,3,4]]
30

Prelude> product [1,2,3,4]
24

Prelude> product []
1

Prelude> let factorial n = product [1..n]
Prelude> factorial 4
24

Part II

Lists and Recursion

Lists

A list is either

• null, written [], or

• constructed, written x:xs, with head x (an element), and tail xs (a list).
[1,2,3] = 1 : (2 : (3 : []))

[1,2,3] = 1 : [2,3] -- head is 1, tail is [2,3]
[2,3] = 2 : [3] -- head is 2, tail is [3]
[3] = 3 : [] -- head is 3, tail is []
[] -- null

"list" = [’l’,’i’,’s’,’t’]
= ’l’ : (’i’ : (’s’ : (’t’ : [])))

"list" = ’l’ : "ist" -- head is ’l’, tail is "ist"
"ist" = ’i’ : "st" -- head is ’i’, tail is "st"
"st" = ’s’ : "t" -- head is ’s’, tail is "t"
"t" = ’t’ : "" -- head is ’t’, tail is ""
"" -- null

Cons and append

Operator (:) is pronounced cons, for construct.
Operator (++) is pronounced append.

(:) :: a -> [a] -> [a]
(++) :: [a] -> [a] -> [a]

1 : [2,3] = [1,2,3]
[1] ++ [2,3] = [1,2,3]
[1,2] ++ [3] = [1,2,3]
’l’ : "ist" = "list"
"li" ++ "st" = "list"

[1] : [2,3] -- type error!
1 ++ [2,3] -- type error!
[1,2] ++ 3 -- type error!
"l" : "ist" -- type error!
’l’ ++ "ist" -- type error!

Cons takes an element and a list.
Append takes two lists.

Two styles of definition—squares

Main*> squares [1,2,3]
[1,4,9]

Comprehension

squares :: [Integer] -> [Integer]
squares xs = [x*x | x <- xs]

Recursion

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

How recursion works—squares

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

squares [1,2,3]

How recursion works—squares

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

squares [1,2,3]
=

squares (1 : (2 : (3 : [])))

How recursion works—squares

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

squares [1,2,3]
=

squares (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])) }

1*1 : squares (2 : (3 : []))

How recursion works—squares

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

squares [1,2,3]
=

squares (1 : (2 : (3 : [])))
=

1*1 : squares (2 : (3 : []))
= { x = 2, xs = (3 : []) }

1*1 : (2*2 : squares (3 : []))

How recursion works—squares

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

squares [1,2,3]
=

squares (1 : (2 : (3 : [])))
=

1*1 : squares (2 : (3 : []))
=

1*1 : (2*2 : squares (3 : []))
= { x = 3, xs = [] }

1*1 : (2*2 : (3*3 : squares []))

How recursion works—squares

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

squares [1,2,3]
=

squares (1 : (2 : (3 : [])))
=

1*1 : squares (2 : (3 : []))
=

1*1 : (2*2 : squares (3 : []))
=

1*1 : (2*2 : (3*3 : squares []))
=

1*1 : (2*2 : (3*3 : []))

How recursion works—squares

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

squares [1,2,3]
=

squares (1 : (2 : (3 : [])))
=

1*1 : squares (2 : (3 : []))
=

1*1 : (2*2 : squares (3 : []))
=

1*1 : (2*2 : (3*3 : squares []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))

How recursion works—squares

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

squares [1,2,3]
=

squares (1 : (2 : (3 : [])))
=

1*1 : squares (2 : (3 : []))
=

1*1 : (2*2 : squares (3 : []))
=

1*1 : (2*2 : (3*3 : squares []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))
=

[1,4,9]

How recursion works—squares

squares :: [Integer] -> [Integer]
squares [] = []
squares (x:xs) = x*x : squares xs

squares [1,2,3]
=

squares (1 : (2 : (3 : [])))
=

1*1 : squares (2 : (3 : []))
=

1*1 : (2*2 : squares (3 : []))
=

1*1 : (2*2 : (3*3 : squares []))
=

1*1 : (2*2 : (3*3 : []))
=

1 : (4 : (9 : []))
=

[1,4,9]

Two styles of definition—odds

Main*> odds [1,2,3]
[1,3]

Comprehension

odds :: [Integer] -> [Integer]
odds xs = [x | x <- xs, odd x]

Recursion

odds :: [Integer] -> [Integer]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

How recursion works—odds

odds :: [Integer] -> [Integer]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

odds [1,2,3]

How recursion works—odds

odds :: [Integer] -> [Integer]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

odds [1,2,3]
=

odds (1 : (2 : (3 : [])))

How recursion works—odds

odds :: [Integer] -> [Integer]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

odds [1,2,3]
=

odds (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])), odd 1 = True }

1 : odds (2 : (3 : []))

How recursion works—odds

odds :: [Integer] -> [Integer]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

odds [1,2,3]
=

odds (1 : (2 : (3 : [])))
=

1 : odds (2 : (3 : []))
= { x = 2, xs = (3 : []), odd 2 = False }

1 : odds (3 : [])

How recursion works—odds

odds :: [Integer] -> [Integer]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

odds [1,2,3]
=

odds (1 : (2 : (3 : [])))
=

1 : odds (2 : (3 : []))
=

1 : odds (3 : [])
= { x = 3, xs = [], odd 3 = True }

1 : (3 : odds [])

How recursion works—odds

odds :: [Integer] -> [Integer]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

odds [1,2,3]
=

odds (1 : (2 : (3 : [])))
=

1 : odds (2 : (3 : []))
=

1 : odds (3 : [])
=

1 : (3 : odds [])
=

1 : (3 : [])

How recursion works—odds

odds :: [Integer] -> [Integer]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

odds [1,2,3]
=

odds (1 : (2 : (3 : [])))
=

1 : odds (2 : (3 : []))
=

1 : odds (3 : [])
=

1 : (3 : odds [])
=

1 : (3 : [])
=

[1,3]

How recursion works—odds

odds :: [Integer] -> [Integer]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

odds [1,2,3]
=

odds (1 : (2 : (3 : [])))
=

1 : odds (2 : (3 : []))
=

1 : odds (3 : [])
=

1 : (3 : odds [])
=

1 : (3 : [])
=

[1,3]

Two styles of definition—oddSquares

Main*> oddSquares [1,2,3]
[1,9]

Comprehension

Recursion

Two styles of definition—oddSquares

Main*> oddSquares [1,2,3]
[1,9]

Comprehension

oddSquares :: [Integer] -> [Integer]
oddSquares xs = [x*x | x <- xs, odd x]

Recursion

oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs

| otherwise = oddSquares xs

How recursion works—oddSquares

oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs

| otherwise = oddSquares xs

oddSquares [1,2,3]

How recursion works—oddSquares

oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs

| otherwise = oddSquares xs

oddSquares [1,2,3]
=

oddSquares (1 : (2 : (3 : [])))

How recursion works—oddSquares

oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs

| otherwise = oddSquares xs

oddSquares [1,2,3]
=

oddSquares (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])), odd 1 = True }

1*1 : oddSquares (2 : (3 : []))

How recursion works—oddSquares

oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs

| otherwise = oddSquares xs

oddSquares [1,2,3]
=

oddSquares (1 : (2 : (3 : [])))
=

1*1 : oddSquares (2 : (3 : []))
= { x = 2, xs = (3 : []), odd 2 = False }

1*1 : oddSquares (3 : [])

How recursion works—oddSquares

oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs

| otherwise = oddSquares xs

oddSquares [1,2,3]
=

oddSquares (1 : (2 : (3 : [])))
=

1*1 : oddSquares (2 : (3 : []))
=

1*1 : oddSquares (3 : [])
= { x = 3, xs = [], odd 3 = True }

1*1 : (3*3 : oddSquares [])

How recursion works—oddSquares

oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs

| otherwise = oddSquares xs

oddSquares [1,2,3]
=

oddSquares (1 : (2 : (3 : [])))
=

1*1 : oddSquares (2 : (3 : []))
=

1*1 : oddSquares (3 : [])
=

1*1 : (3*3 : oddSquares [])
=

1*1 : (3*3 : [])

How recursion works—oddSquares

oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs

| otherwise = oddSquares xs

oddSquares [1,2,3]
=

oddSquares (1 : (2 : (3 : [])))
=

1*1 : oddSquares (2 : (3 : []))
=

1*1 : oddSquares (3 : [])
=

1*1 : (3*3 : oddSquares [])
=

1*1 : (3*3 : [])
=

1 : (9 : [])

How recursion works—oddSquares

oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs

| otherwise = oddSquares xs

oddSquares [1,2,3]
=

oddSquares (1 : (2 : (3 : [])))
=

1*1 : oddSquares (2 : (3 : []))
=

1*1 : oddSquares (3 : [])
=

1*1 : (3*3 : oddSquares [])
=

1*1 : (3*3 : [])
=

1 : (9 : [])
=

[1, 9]

How recursion works—oddSquares

oddSquares :: [Integer] -> [Integer]
oddSquares [] = []
oddSquares (x:xs) | odd x = x*x : oddSquares xs

| otherwise = oddSquares xs

oddSquares [1,2,3]
=

oddSquares (1 : (2 : (3 : [])))
=

1*1 : oddSquares (2 : (3 : []))
=

1*1 : oddSquares (3 : [])
=

1*1 : (3*3 : oddSquares [])
=

1*1 : (3*3 : [])
=

1 : (9 : [])
=

[1, 9]

Definition by pattern matching

null :: [a] -> Bool
null [] = True
null (x:xs) = False

head :: [a] -> a
head (x:xs) = x

tail :: [a] -> [a]
tail (x:xs) = xs

How definition by pattern matching works—null

null :: [a] -> Bool
null [] = True
null (x:xs) = False

null []

How definition by pattern matching works—null

null :: [a] -> Bool
null [] = True
null (x:xs) = False

null []
=

True

How definition by pattern matching works—null

null :: [a] -> Bool
null [] = True
null (x:xs) = False

null []
=

True

How definition by pattern matching works—null

null :: [a] -> Bool
null [] = True
null (x:xs) = False

null [1,2,3]

How definition by pattern matching works—null

null :: [a] -> Bool
null [] = True
null (x:xs) = False

null [1,2,3]
=

null (1 : (2 : (3 : [])))

How definition by pattern matching works—null

null :: [a] -> Bool
null [] = True
null (x:xs) = False

null [1,2,3]
=

null (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])) }

False

How definition by pattern matching works—null

null :: [a] -> Bool
null [] = True
null (x:xs) = False

null [1,2,3]
=

null (1 : (2 : (3 : [])))
=

False

How definition by pattern matching works—head

head :: [a] -> a
head (x:xs) = x

head [1,2,3]

How definition by pattern matching works—head

head :: [a] -> a
head (x:xs) = x

head [1,2,3]
=

head (1 : (2 : (3 : [])))

How definition by pattern matching works—head

head :: [a] -> a
head (x:xs) = x

head [1,2,3]
=

head (1 : (2 : (3 : [])))
= { x = 1, xs = (2 : (3 : [])) }

1

How definition by pattern matching works—head

head :: [a] -> a
head (x:xs) = x

head [1,2,3]
=

head (1 : (2 : (3 : [])))
=

1

