
Inf1B Joint OOP + D&A Assignment

Building a GUI

Hutchins, Nadarajan∗

Out: March 2nd, 2007 Due: 5:00pm Friday March 23rd, 2007

Materials: Download the the following from the informatics 1 website:

http://www.inf.ed.ac.ac.uk/teaching/courses/inf1/oop/assignments/

assignment6.zip

Submission: Type the following commands at the UNIX shell prompt to submit
this assignment:

submit inf1 inf1b da6 da6.pdf % D&A file
cd workspace/MyGUI

submit inf1 inf1b da6 DatabaseMain.java % OOP file

The fine print: This project is due by 5:00pm on the due date. If your program
does not compile, 30% will be deducted from your mark. Up to 10 points may be
deducted for bad indentation. Late submissions will not be accepted. Collaboration
with other students on this assignment is not permitted. If you have any questions
on this assignment, please post them to the newsgroup eduni.inf.course.inf1b

or ask a demonstrator in one of the drop-in labs sessions.

1 Introduction

You’ve seen widgets in a couple of labs, and the last OOP tutorial covered how to build
a simple calculator. You have also covered structured data and SQL in the Data and
Analysis portion of this course. In this assignment you will be applying knowledge that
you’ve learned in both halves of the course. Your goal is to design and build a GUI that
allows users to query a database.

There are two parts to this assignment – an OOP portion, and a D&A portion. Each
part will be marked separately as a single assignment. For the D&A portion, you must
design a GUI, according to the instructions on the D&A assignment sheet. For the OOP
portion, you must implement your design in Java.

2 The OOP Portion of the Assignment

You can download the code for this assignment from
http://www.inf.ed.ac.uk/teaching/courses/inf1/oop/assignments/assignment6.zip

Create a new project named “MyGUI” within eclipse, and import the example code
into it as usual. The code contains a simple widget library, along with a function that you

∗Edited from an original version by Manuel Marques-Pita

1



can use to query the IMDB database using SQL. To get the database stuff working, you
will need to add the file pg73jdbc3.jar to your classpath. Do the following:

• Select “MyGUI” with the package explorer, and then click on
“Project → Properties.”

• Select “Java Build Path” in the left-hand column.
• Click on the “Libraries” tab.
• Click the <Add Jars> button.
• Select “pg73jdbc3.jar” from the list – it should be in the “MyGUI” folder.
• Click <Ok>.
• Click <Ok> again.

2.1 Example Code

The example code contains a GUI library called widgets which has been written especially
for informatics 1. You do not (and should not) use the standard Java libraries for this
assignment. Java comes with a very sophisticated GUI library called Swing, which is
described in the textbook by Deitel and Deitel. Unfortunately, although Swing is a powerful
library, it is also very complicated, and it takes a good deal of time and experience to master.
The widgets library provided here is much smaller and simpler.

The full documentation for the widgets library can be found at:

http://homepages.inf.ed.ac.uk/s0341095/GUIDoc/index.html

An example program has been provided which demonstrates how to use the library.
“CalculatorMain.java” is the same calculator program that you discussed in tutorial.

2.2 Widgets

The inheritance hierarchy for the widgets library is shown in figure 1. There are three
kinds of widget, which are described below.

Simple widgets, such as TextLabel and TextArea, just draw something on the screen.
They are used to display information to the user, but they do not respond to any events.

Controls, such as Button and Checkbox, generate actions. Whenever the user clicks
on a button, clicks on a check box, or changes the text in a text field, it triggers the
doAction() method for that widget. In order to build a GUI, you must create subclasses
which override doAction().

WidgetGroups, such as VLayout and HLayout, are not visible on the screen. A widget
group packs group of smaller widgets into one big widget, and lays them out into neat rows
and columns.

The widget classes are summarized below. For more information on how to use these
widgets, please refer to the online documentation.

• A TextLabel contains a single line of text, which is usually a few words or a short
sentence. The text cannot be edited by the user. As its name suggests, TextLabels
are generally used to label various parts of the GUI so that the user understands
what to do.

• A Button should be self-explanatory. It triggers doAction() whenever the user clicks
on it.

• A CheckBox consists of a label, along with a small box which can be either checked
or unchecked. It triggers doAction() whenever the user checks or unchecks the box.

• A TextField contains a single line of editable text, where the user can enter names,
addresses, etc. It triggers doAction() whenever the user changes the text.

• A NumberField is a special kind of TextField for getting numeric input from the
user. It will ensure that the user has entered a valid integer, and provides methods
which convert the text to and from a integer.

2



Figure 1: The Widget Hierarchy

• A TextArea is not editable, but it can display several lines of text to the user. It is
useful for showing large amounts of output.

3



• An HLayout widget will create a horizontal row of widgets.
• A VLayout widget will create a vertical column of widgets.

2.3 Laying out the GUI

Every window on the screen has a single root widget, which is a WidgetGroup that contains
all of the labels, buttons, text fields, etc. which are displayed within that window. There
is no way to specify exactly where each widget should be placed within the window. The
exact coordinates and size of each widget will vary depending on the screen resolution,
font size, and the size of the window. Instead of specifying exact coordinates, you must
organize your widgets into rows and columns. The example file “Calculator.java” shows
how to lay out the following simple calculator:

Each group of four buttons is packed into a column using VLayout. The four columns
are then packed into a grid using HLayout. And finally, the TextField at the top is placed
above the buttons using VLayout again.

2.4 Building an Application

The main class for your application is found in “DatabaseMain.java”. DatabaseMain in-
herits from DatabaseApp. DatabaseApp opens a new window on the screen, and connects
to the inf1 database.

You must implement the buildGUI() method so that it constructs a root widget for
your application. The buildGUI() method is triggered automatically by DataBaseApp

when it creates the main application window.
In order to construct a GUI, you will also need to create a number of classes which

inherit from the basic widgets, but which override doAction() to do different things. For
example, “Calculator.java” defines three kinds of button:

• A DigitButton adds a new digit to the current number.

• An OperatorButton sets the operation to be performed.

• The EqualsButton performs the operation.

Each of these classes is defined inside the main application class. The main application
class has fields which hold the current state of the application. The widgets you define will
need to access and modify this state. (You will have to decide what the current state is,
add the appropriate fields, and then initialize those fields in the constructor.)

4



3 Querying the database

The runQuery() method (defined in DatabaseApp) will query the database. It’s defined
as follows:

List<List<String>> runQuery(String sql)

RunQuery takes a single string as an argument, which should be a valid SQL statement
of some kind. It will return a list of all the entries it finds. Each entry is a list of strings
which contain the values requested by the SQL statement.

For example, the statement:

runQuery("SELECT title,year FROM movie WHERE year < ’1920’")

will return a list of entries, where each entry is a list of two strings. The first string will
contain the title of the movie, while the second contains the year. It is your job to take
the list of lists of strings that runQuery() returns, and present them to the user in some
sensible fashion.

3.1 Testing queries with psql

If you are having trouble getting your queries to work within Java, you may wish to test
them first using the psql program that you used in an earlier D&A lab. To run psql, type
the following at the command prompt:

psql -h pgteach inf1 inf1

The password is inf1. In addition to select statements, you may also find the following
commands useful:

• \dt — get a list of all tables in the database.
• \d tablename — get a list of all columns in table tablename.

3.2 Lists and Iterators

Please refer to the lecture notes for more information on how to use lists in Java; what
follows is a brief summary. The easiest way to process the list of entries is to use an
extended for loop. The following example first queries the database to get a list of entries,
and then iterates over the list.

List<List<String>> results = runQuery("SELECT title,year FROM movie");

for (List<String> entry : results) {

/* ... do something with entry ... */

}

3.3 Working with strings

Another thing that you will have to do in this assignment is display textual information to
the user. The ’+’ operator will not only concatenate two strings together, it will automat-
ically convert other objects to strings. For example:

int numCats = 23;

String mystr = "My aunt has " + numCats + " cats.";

// mystr = "My aunt has 23 cats.";

5



4 The OOP portion of the assignment

For the OOP portion of this assignment, you must design and implement a new GUI. Your
GUI should allow the user to request information by typing data into text fields, checking
boxes, clicking buttons etc.

Once the user has requested some information, your program should generate an SQL
SELECT statement which retrieves that information from the database. Use runQuery() to
do the actual retrieval.

After your program has retrieved the information, it must format the results and present
them to the user. The easiest way to do this is to format the results as a string, and then
show that string within a TextArea. The string must be formatted so that it is readable!

4.1 Specifics

Download the example code from the website, and create a new project in eclipse as usual.
The file you must submit for this assignment it called “DatabaseMain.java”. For the most
part, you are free to organize your code however you see fit. However, to help the markers
mark your submission, you should structure your program according to the following basic
outline.

• Implement buildGUI(). The buildGUI() method should return a single HLayout or
VLayout object which contains all of the widgets in the GUI. The widget library will
invoke buildGUI() automatically.

• Implement buildSQLQuery(). The buildSQLQuery() method should read whatever
data the user has entered, and use it to construct and return an SQL query string.
Note that buildSQLQuery is not called automatically; you will have to invoke it from
within the GUI logic.

• Implement showResults(). The showResults() method should take the list of re-
sults from runQuery(), format those results in some way, and then show them to the
user. Once again, showResults is not called automatically.

• Implement appropriate GUI logic. You will need to write some additional fields,
methods, and widget classes which manage the internal state of the GUI in response
to user actions. Place those above the buildGUI() method. Your GUI logic is
responsible for calling buildSQLQuery(), runQuery(), and showResults() at the
appropriate time.

4.2 Hints and tips

Hint: Start small. The first version of your GUI can be very simple. Start by writing a
program which generates simple queries, and then shows the results. Once you get that
working, you can start adding bells and whistles, one widget at a time. It is easy to get
overwhelmed if you start writing a large GUI all at once.

6



5 The D&A portion of the assignment

5.1 Querying

The GUI developed should support the retrieval of information on the movie database that
you have worked on in the first Data and Analysis Lab. Your application must enable users
to perform the following queries:

1. What movies have been directed by a given director.

2. What movies have a particular genre.

3. What movies directed by a given director have ratings higher than a given rat-

ing*.

4. What movies with a particular genre have votes higher than a given vote*.

*Note: For the last two items (Queries 3 and 4), apart from the list of instances retrieved by
the database, you also need to show a field in the interface showing the counts of instances
for each of these two queries. The counting of the elements must be done in Java and
not using SQL queries. SQL queries must only be used to retrieve lists of results for a
given query. Please consult Section 5.4 for the SQL queries that you must use to test your
system.

5.2 Use Cases

You must design Use Cases to support your design implementation. Use cases essentially
provide a basis for defining functional requirements of a system, in this case your movie
querying and reporting system. The goal of doing this analysis is to get a very concrete
picture of how the user (an actor) will interact with your system. In order to build your
use case model you must use the conventions discussed in the lecture. Next year you will
learn to convey the same information on a much simpler (UML) diagram. For the time
being, however, the use cases need to be expanded in detail using structured text.

The main idea of this part of the coursework is that you identify a set of possible use
cases relevant to the task of retrieving film information according to the queries listed
above. You should use a story board approach during this analysis (as in the joke gen-
eration example illustrated by Use Case 2 in lecture slides) so that you devise one use

case for each possible scenario of interaction between the user and the tool you are
designing. Add your use cases to the report that you will submit.

By doing this kind of analysis, you will be able to determine the features that your
interface must have in order to be fully functional as well as usable by the users. In
reality this process is done prior to code development in order to capture all the functional
requirements which should be implemented. It would also help if you followed this practice
in your assignment.

5.3 User Interface Design

Finally, provide a document for the choice of your interface design using diagrams of

detailed textual explanations and a detailed description of the interface you
will implement in Java. Make sure you define what components are used and justify the
presence of each of them in the interface. A screen capture (or a drawing) of your GUI
would be helpful for this part. Please refer to Section 1.1 of OOP Assignment 4 (Game
Programming) on how to acquire a screenshot. You should also include some good design

principles that you have adopted for your interface (e.g. Nielsen’s Usability Heuristics).
Provide justifications for the principles that you have identified.

7



5.4 Test Queries

In order to make your work easier, we will provide the SQL queries you will be using to test
your application. Note that all of the provided queries start with a SELECT statement and
end with a “;”. In SQL these statements could be in uppercase or lowercase, however, actual
database entries, such as director’s name (enclosed in single quotes ’ ’), are case-sensitive.
The whole query is actually one single line of text and should be treated in your program
as one String object (for a given query).

1. In order to find the movies directed by a given director (for example Peter Jackson)

SELECT title FROM movie, moviedir, director

WHERE movie.mid = moviedir.mid

AND moviedir.did = director.did

AND director.fname = ’Peter (I)’

AND director.lname = ’Jackson’;

2. In order to find the movies of a particular genre (e.g. Sci-Fi)

SELECT title, category FROM movie, moviegenre, genre

WHERE movie.mid = moviegenre.mid

AND moviegenre.gid = genre.gid

AND genre.category = ’Sci-Fi’;

3. In order to find the movies that have been directed by a given director (e.g. Steven
Spielberg) that have ratings higher than a given rating (e.g. 8.0)

SELECT title, rating FROM movie, moviedir, director

WHERE movie.mid = moviedir.mid

AND moviedir.did = director.did

AND director.fname =’Steven’

AND director.lname =’Spielberg’

AND movie.rating > 8.0;

4. In order to find the movies of a particular genre (e.g. Fantasy) and that have votes
higher than a given vote (e.g. 40 000)

SELECT title, category, votes FROM movie, moviegenre, genre

WHERE movie.mid = moviegenre.mid

AND moviegenre.gid = genre.gid

AND genre.category = ’Fantasy’

AND movie.votes > 40000;

Important note. When testing your interface use exclusively the SQL queries provided
in this handout and not others. The reason for this is that many of you will be querying
the DB at the same time and queries producing long result lists will delay the system. This

8



will cause delays in other student’s queries and cause delays to you as well. Simply copying
and pasting the above queries onto psql won’t work due to the way single quotes copied
from pdf files appear on the terminal screen. Hence you will need to type out part of the
queries yourself, especially when a query involves single quotes, in which case all of them do.

Once again, you will need to think carefully about interface design issues here. Make
sure that, as you think about possible use cases, you consider the set of interface compo-
nents you need for your interface (remember that you only have access to those provided
by the Widgets hierarchy).

In sum, for the D&A part of this coursework you need to produce and mark clearly:

1. A Use Case specification.

2. A detailed Interface Design document (diagram and/or textual form).

5.5 PDF file generation in Linux

For the D&A portion of the assignment you are required to submit a pdf file. In essence it
does not matter how you come up with this file, but here are some tips for generating one
in Linux. This could be achieved in several ways. A simple and straight-forward way is to
use Open Office. Here are the steps:

1. Type ooffice & from your command prompt. Or select Applications->Office->

Word Processor. This should invoke Open Office.

2. In Open Office, select File->New->Text Document. A blank page should appear
where you can type your report.

3. To insert a diagram, select Insert->Picture->From File and select the picture
from the directory where it is stored.

4. You can save your diagram in various formats, a suitable choice would be the Open
Office format (sxw) which you will be able to edit later. To save it in pdf format,
select File->Export as PDF. Choose a suitable directory to save your file, e.g. your
home directory. Save it as da6.pdf. This is the final file that you will submit.

5. Acroread is a suitable program to view the pdf file. Type acroread da6.pdf & from
your command prompt or select Applications->Office->Adobe Reader to invoke
the program.

6. Please make sure that your matriculation number (and optionally name) appear
at the start of your document.

Good Luck!

9


