
Tutorial 2: Relational Modelling

Informatics 1 Data & Analysis

Week 4, Semester 2, 2013–2014

This worksheet has three parts: tutorial Questions, followed by some Examples and their Solutions.

• Before your tutorial, work through and attempt all of the Questions in the first section.

• The Examples are there for additional preparation, practice, and revision.

• Use the Solutions to check your answers, and read about possible alternatives.

You must bring your answers to the main questions along to your tutorial. You will need to be
able to show these to your tutor, and may be exchanging them with other students, so it is best to
have them printed out on paper.

If you cannot do some questions, write down what it is that you find challenging and use this to
ask your tutor in the meeting.

Tutorials will not usually cover the Examples, but if you have any questions about those then write
them down and ask your tutor, or go along to InfBASE during the week.

It’s important both for your learning and other students in the group that you come to tutorials
properly prepared. If you have not attempted the main tutorial questions, then you may be sent
away from the tutorial to do them elsewhere.

Data & Analysis tutorials are not formally assessed, but they are a compulsory and important part
of the course. If you do not do the exercises then you are unlikely to pass the exam.

Attendance at tutorials is obligatory: if you are ill or otherwise unable to attend one week then
email your tutor, and if possible attend another tutorial group in the same week.

Optional Reading: Chapter 3 (The Relational Model) of Ramakrishnan and Gehrke, Database
Management Systems.

Please send any corrections and suggestions to Ian.Stark@ed.ac.uk

1

mailto:Ian.Stark@ed.ac.uk?subject=Inf1-DA-13-T1

Introduction

In the previous tutorial, you designed an ER model for a database, based on a scenario description
for a poster exhibition. In this tutorial, you will use design a relational model to implement such an
ER model, applying the techniques described in lectures.

Question 1: Relational Schema Notation

Below is a schema for a relational database table, written in SQL DDL. However, it has (at least)
5 errors in syntax. What are they? (Note: it’s not the choice of lower or upper case — either is
acceptable SQL.)

create table film (
filmid integer,
title varchar(50),
year integer
director name varchar(50) not null,
language varchar(30),
primary key (filmid),
foreign key director name references director,
foreign key (leading actor) references actor

Question 2: Mapping an ER Model to Relational Schemas

For this question, please use the ER model in Figure 1 on page 3, which is a fragment from a solution
to last week’s exercise. Think about how the entities and relationships can be mapped to tables in
a relational model. Then write out SQL create table statements to define all relations required for
this database. These SQL declarations should include primary key and foreign key constraints as
appropriate. The ER diagram gives a number of constraints on the model — try to capture as many
as you can, remembering that it may not be possible to express all of them in relational schemas.

Things to think about: What different approaches are there for mapping relationship sets with key
constraints? What are the advantages and disadvantages of each approach? Which approach did you
choose for translating the provided ER model and why?

Question 3: Refining the Model

The following questions are about possible refinements to your relational model.

(a) In your schemas, which fields are not allowed to take a null value by default? Are there any
that you should disallow from taking a null value? What constraints on the data model can you
establish by using not null declarations?

(b) Consider the various foreign key constraints in your relational model design. In each case, what
action would it be appropriate to instruct SQL to take on delete? How would you express this
in the schema declaration?

(c) Suppose each graphic designer must create exactly one poster. How would you represent this in
your ER diagram? Would you be able to represent it in your relational model, and if so, how?

(d) Go back to your original relational model from Question 2. Can you implement the total par-
ticipation constraint of Poster on the relationship sets Creates and Judges? If yes, then how?

(e) According to the original scenario: “Each poster is judged by three different judges”. Can you
model this in your relational model? If yes, how?

2

Graphic Designer

Name Affiliation

Creates Poster

Title ID

Judges

Decision

Judge

Name

email

Affiliation

Figure 1: An ER model for part the poster exhibition scenario from Tutorial 1. There are thick lines
from Poster to Creates and to Judges, and an arrow from Graphic Designer to Creates.

Question 4: More Things to Think About

(a) Based on your answers so far, how do you think expressivity of the relational model compares
to the ER model in this scenario?

(b) Based on your answers for the above questions, what strategy would you recommend for designing
a relational model for a given scenario? By directly translating the corresponding ER model, by
directly translating the scenario, or as a combination of the two?

3

Examples

This section contains further exercises on mapping ER models into relational ones. Examples 1 and 2
are similar to the main tutorial questions; Examples 3 to 7 are based on questions in past exam papers.

Following these there is a section presenting solutions and notes on all the examples.

An Inter-University Gliding Competition

These examples are based on the scenario presented in the Examples section of Tutorial 1: here we
now map an ER model for that into relational schema.

Example 1: Mapping an ER Model to Relational Schemas

For this example, you should use the ER model shown in Figure 2 on page 5. Think about how the
entities and relationships there can be mapped to tables in a relational model. Then state appropriate
SQL create table statements for all relations needed to create this database. These declarations
should also include all appropriate primary key or foreign key constraints.

Example 2: Discussion

Looking at the relational schema that you have created for the previous question, give your justification
for the following design decisions.

(a) Look at your choice of tables, their fields and types. Are there other ways they could have been
designed? Explain your preferences.

(b) In your schemas, which fields are not allowed to take a null value? Are there any that you should
disallow from taking a null value? What constraints can you establish by preventing the fields
from taking a null value?

(c) Did you use any on delete cascade declarations in your schema? Are there entries in your
schema where you think it might be appropriate to do so?

Example 3

The following ER diagram appeared in Tutorial 1 as a suitable model for the Itsy! Bitsy! craft trading
website.

Seller

Postal Address

Name email

Sells Product

Name ID

Price Available

Design appropriate relational schema for this information and present them as two table declarations
in the SQL Data Definition Language: for Seller and Product. Explain how you capture all constraints
on the data.

4

Team

Person Glider

Task TurningPoint

MemberOf

Flies

TaskTP

university

entryFeePaid?

personId

name

experienceLevel

crewCapacity

type

callsign

numSeats

compDayNo

startTime
startHeight trigraph

latitude

longitude

Figure 2: An Entity-Relationship model for the gliding competition database.

5

Example 4

This ER diagram is also from Tutorial 1, as a model for a database of experts on different subjects.

Expert Field

LeadingExpert

id Namename affiliation email

ExpertIn

.

(a) Use the SQL Data Definition Language to declare relational schemas that implement this ER
diagram.

(b) Explain which of the constraints in the ER diagram you have incorporated in your relational
schemas and which you have not. Where you have been able to capture a constraint, explain
how it appears in the SQL code.

Example 5

This diagram from Tutorial 1 is a proposed ER model for a university staff database.

Staff Department

Head

id Name Addressname jobtitle salary

BelongsTo

(a) Use the SQL Data Definition Language to declare relational schemas that implement this ER
diagram.

(b) Explain which of the constraints in the ER diagram you have incorporated in your relational
schemas and which you have not. Where you have been able to capture a constraint, explain
how it appears in the SQL code.

6

Example 6

This ER model captures some information about a tennis association’s members and their performance
in international tournaments.

Player Match

PlayerRef Name Nationality MatchRef Year Tournament Round

winner

loser

(a) Use the SQL Data Definition Language to present relational schema that implements this dia-
gram using two tables: Player and Match.

(b) Explain how you have expressed the participation and key constraints of the ER model in your
SQL declarations.

Example 7

This ER diagram gives a conceptual model for a theatre manager’s database about forthcoming shows
by visiting acting companies.

Diary Production CompanyPerformance Performed-by

Date Name Name CountryDirectorSeats

(a) Give declarations in the SQL Data Definition Language to implement this as a relational model
using three tables: Diary, Production, and Company.

(b) How does your SQL code capture the total participation and key constraints shown in the ER
diagram?

7

Solutions to Examples

What follows are not entirely “model” answers; instead, they indicate a possible solution, together with
some comments on what features are relevant and where there might be trade-offs between different
alternatives.

Remember that not all of these questions will have a single “right” answer. There can be multiple
appropriate ways to design a relational model for a given scenario, each with particular advantages
or disadvantages. Even where these notes include more than one solution, it still cannot cover every
possible correct alternative.

If you have difficulties with a particular example, or have trouble following through the solution,
please raise this as a question in your tutorial.

Solution 1

Here is a set of create table statements for the ER diagram provided. The particular choice of
varchar(..) size is arbitrary, but should be able to sensibly contain likely values. Notice that every
foreign key properly references the primary key in the linked table.

create table Person (
personId integer,
name varchar(30),
experienceLevel varchar(15),
university varchar(50) not null,
primary key (personId),
foreign key (university) references Team,
)

create table Team (
university varchar(50),
entryFeePaid integer,
primary key (university)
)

create table Glider (
callsign varchar(5),
type varchar(10),
numSeats integer,
primary key (callsign)
)

create table Task (
compDayNo integer,
startTime timestamp,
startHeight integer,
primary key (compDayNo)
)

create table Flies (
personId integer,
callsign varchar(5),
compDayNo integer,
crewCapacity integer,
primary key (personId, callsign, compDayNo),
foreign key (personId) references Person,
foreign key (callsign) references Glider,
foreign key (compDayNo) references Task
)

create table TurningPoint (
trigraph varchar(3),
latitude varchar(10),
longitude varchar(10),
primary key (trigraph)
)

create table TaskTP (
compDayNo integer,
trigraph varchar(3),
primary key (compDayNo, trigraph),
foreign key (compDayNo) references Task,
foreign key (trigraph) references TurningPoint
)

8

Solution 2

(a) The tables above capture the MemberOf relationship by bundling it into the Person table as the
foreign key team. This is possible because of the key constraint between Person and MemberOf.
However, the relationship could also be represented as a table itself:

create table MemberOf (
personId integer,
university char(50),
primary key (personId),
foreign key (personId) references Person,
foreign key (university) references Team
)

create table Person (
personId integer,
name varchar(30),
experienceLevel varchar(15),
primary key (personId)
)

Notice that the Person table has no mention of a university or reference to Team: this is all now
in the new MemberOf relation. The key constraint is captured by making personId a primary key
(rather than the {personId, university} composite) so that there can only be a single MemberOf
record for each person.

(b) It is normal (but not universal in RDBMS) that primary keys can never be null. In the tables
declared above there is also an explicit not null constraint on the university field of the Person
relation. This captures the total participation constraint from the ER model: each person must
have an associated university for whose team they compete.

In the alternative relational model where MemberOf is a separate relationship, there is no
straightforward way to capture this participation constraint.

The not null declaration on university here is enforcing an integrity constraint on the data. We
might also use not null to capture more general expectations from the scenario that certain
values should always be included in the database. For example, the latitude and longitude on a
TurningPoint, or the type and numSeats of a Glider.

(c) The declarations above do not include any on delete cascade instructions. The classic situation
where they are essential is for weak entity sets in an ER model, where one entity is entirely
dependent on its identifying relationship for full representation. There are none of these in the
ER model here.

However, any foreign key is a potential site for on delete cascade, if the relation in which it
appears loses meaning without its target. In this example, the TaskTP relation might perhaps
use on delete cascade for the compDayNo field referencing Task — if a particular day’s task is
removed from the database, then the detail of which turning points belong to that task is no
longer meaningful. If we have in create table TaskTP (...) the line

. . . foreign key (compDayNo) references Task on delete cascade, . . .

then if ever a record is erased from the Task table, every corresponding record from the TaskTP
table will also be deleted.

In the alternate table declarations of solution (b), we could consider doing the same for the
personId reference of the MemberOf table: if a person is removed from the database, then it is
no longer relevant to record their link to a particular Team.

9

Solution 3

Here are suitable SQL data declarations for the two tables.

create table Seller (
name varchar(30) not null,
email varchar(30) not null,
address varchar(200) not null,
primary key (email)

)

create table Product (
name varchar(60) not null,
id integer not null,
price integer not null,
available integer not null,
seller varchar(30) not null,
primary key (id),
foreign key (seller) references Seller(email)

)

The key constraint from entity Product to relationship Sells, shown by the arrowhead and which
requires that every product have no more than one matching seller, is enforced by the foreign key
declaration on field seller in table Product.

The total participation constraint from Product to Sells, shown by the thick line and which requires
that every product must have some seller recorded, is enforced by the not null declaration on the field
seller in table Product.

These declarations include not null statements for every field. Not all of these are necessarily
essential, and they fall into three categories:

• The not null declaration on seller captures the total participation constraint, and so cannot be
left out.

• The not null declarations on email and id fields can be omitted, as the primary key declaration
implies not null anyway. (These fields must still not be null; it’s just that this does not need to
be explicitly declared.)

• The not null declarations on the remaining fields — price, available, and name for both Seller
and Product — are not essential to the integrity of the model, so whether they are included or
removed depends more on the particular scenario. Here, for example, it’s probably important
to always have a name for a product, but the price might at times be unknown.

Solution 4

(a) These SQL declarations express the ER model recording expertise in various fields.

create table Expert (
id varchar(6),
name varchar(30),
affiliation varchar(20),

email varchar(20),
primary key (id)

)

create table Field (
fieldname varchar(20),
leadexpert varchar(6),
primary key (fieldname),
foreign key (leadexpert) references Expert(id)

)

create table ExpertIn (
id varchar(6),
fieldname varchar(20),
primary key (id,fieldname),
foreign key (id) references Expert,
foreign key (fieldname) references Field

)

(b) The only constraint in the diagram is a key constraint from Field to LeadingExpert, recording the
requirement that there be no more than one recorded leading expert for each field of study. In

10

the tables above, this is captured by the fact that leadingexpert is part of the Field table, with a
foreign key constraint referencing the Expert table.

This leadingexpert field does not have a not null declaration, because there is no total participa-
tion constraint in the ER model: it is acceptable for a particular field to have no leading expert
recorded in the database.

Notice the contrast with the ExpertIn relationship, which appears not as a single field but a
whole table in the relational model, allowing for many experts in each field.

Solution 5

(a) The following declarations map the ER diagram for a staff database into an SQL model. As in
Solution 4, one relationship is captured in a single field: the Head of Department relationship is
held in the hod field of the Department table.

create table Staff (
id varchar(6),
name varchar(30),
jobtitle varchar(10),
salary integer,
primary key (id)

)

create table Department (
deptname varchar(20),
address varchar(40),
hod varchar(30) not null,
primary key (deptname),
foreign key (hod) references Staff(id)

)

create table BelongsTo (
id varchar(6),
deptname varchar(20),
primary key (id,deptname),
foreign key (id) references Staff,
foreign key (deptname) references Department

)

There is an alternative presentation using tables for all relationships, shown below. However, as
will be seen in the solution to (b), this does not capture as many of the constraints in the ER
model.

create table Staff (
id varchar(6),
name varchar(30),
jobtitle varchar(10),
salary integer,
primary key (id)

)

create table Department (
deptname varchar(20),
address varchar(40),
primary key (deptname)

)

create table BelongsTo (
id char(6),
deptname char(20),
primary key (id,deptname),
foreign key (id) references Staff,
foreign key (deptname) references Department)

create table HeadOfDept (
deptname char(20),
id char(6),
primary key (deptname),
foreign key (id) references Staff,
foreign key (deptname) references Department)

(b) The original ER diagram had three constraints:

• A participation constraint from Staff to BelongsTo, recording that each member of staff
must belong to at least one department (but possibly more than one);

11

• A participation constraint from Department to Head, showing that each department must
have a head; and

• A key constraint from Department to Head, showing that each department can have at most
one head (and therefore exactly one).

The first set of tables in (a) captures the key constraint by making hod a field in Department,
with a foreign key link to Staff: so there can be only one head of department recorded. This
is then enhanced to capture the total participation constraint by declaring hod as not null: so
there must always be some head of department. These tables do not, however, capture the total
participation constraint saying that every member of staff must be in at least one department.

The alternative tables presented second in (a) capture none of the constraints in the original
ER model.

Solution 6

(a) Here are some SQL declarations for the tennis association.

create table Player (
playerref integer,
name varchar(20),
nationality varchar(10),
primary key (playerref)

)

create table Match (
matchref integer,
year integer
tournament varchar(15),
round varchar(15),
winner integer not null,
loser integer not null,
primary key (matchref),
foreign key (winner) references Player(playerref),
foreign key (loser) references Player(playerref)

)

It might be reasonable to declare some further fields as not null, depending on the application
scenario: such as name of Player, or tournament, year and round in Match.

(b) The participation and key constraints are from each Match entity to the Winner and Loser
relationships. The key constraints are captured by making winner and loser both foreign key
fields of the Match table, rather than stand-alone relations; and the participation constraints are
expressed through the not null declarations on winner and loser.

The outcome is that every row in the Match table must have exactly one winner and loser
recorded, both of which must be playerref values for members of the Player table.

12

Solution 7

(a) These are suitable SQL declarations for the theatre manager.

create table Diary (
date varchar(8),
seats integer,
pname varchar(30),
director varchar(30),
primary key (date),
foreign key (pname,director) references Production

)

create table Production (
pname varchar(30),
director varchar(30),
cname varchar(30) not null,
primary key (pname,director),
foreign key (cname) references Company

)

create table Company (
cname varchar(30),
country varchar(15),
primary key (cname)

)

(b) There is a key constraint from Diary to Performance, indicating that on each diary date there
can be at most one performance. This is expressed by making the pname and director of that
performance be fields in the Diary table, declared as foreign keys referencing the Production table.
Notice that these may be null, which would indicate a day on which there is no performance.

In the ER model there is also a key and total participation constraint from Production to
Company, showing that each production must be performed by exactly one company. This
is captured in the SQL again with a foreign key field, in this case putting the company name
cname as a field in the Production table. Declaring this as not null enforces the total participation
constraint.

13

