
http://www.inf.ed.ac.uk/teaching/courses/inf1/da

Informatics 1: Data & Analysis
Lecture 5: Relational Algebra

Ian Stark

School of Informatics
The University of Edinburgh

Tuesday 28 January 2014
Semester 2 Week 3

http://www.inf.ed.ac.uk/teaching/courses/inf1/da
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Support (1/3)

If you have questions about something in the lectures, difficulties with
tutorial exercises, or want to find out more on the material, ask someone.

Other students: in your tutorial group, in the lab, elsewhere.
InfBASE: drop in Monday–Thursday 1600–1800 in AT 5.02
Your course tutor: in person at your tutorials, or by email.
The lecturer, Ian Stark: in person after lectures, drop-in office hour
IF 5.04 1030–1130 every Wednesday, or by email.
The course TA, Areti Manataki: AT 5.02 1630–1730 every Tuesday.
Online: NB; in the discussion group; IRC #inf1; Facebook, etc.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Support 2/3

Here are details for some of these online resources:

NB Collaborative annotation, questions and answers. Follow links from
course web page or subscribe at http://is.gd/inf1_da_nb

Forum Anything from Inf1, requires EASE login. http://is.gd/inf1_forum

IRC Chatroom on student-run server: #inf1 at irc.imaginarynet.org.uk

Facebook Informatics - Class of 2017 - University of Edinburgh
https://www.facebook.com/groups/uoeinformatics2017/

Ian Stark Inf1-DA / Lecture 5 2014-01-28

http://is.gd/inf1_da_nb
http://is.gd/inf1_forum
https://www.facebook.com/groups/uoeinformatics2017/

Support 3/3

For technical support when machines aren’t working or you have problems
with software on DICE, fill out the computing support form.

http://computing.help.inf.ed.ac.uk

For administrative support in anything related to teaching, contact the
Informatics Teaching Organisation (ITO) by filling out their online contact
form, or go to the ITO office on floor 4 of Appleton Tower.

http://www.inf.ed.ac.uk/teaching/contact

If you are having difficulties affecting all of your courses, or issues arising
outside the University, contact your personal tutor.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

https://www.inf.ed.ac.uk/systems/support/form/
http://computing.help.inf.ed.ac.uk
http://www.inf.ed.ac.uk/teaching/contact
http://www.inf.ed.ac.uk/teaching/contact
http://www.inf.ed.ac.uk/teaching/contact

Lecture Plan for Weeks 1–4

Data Representation
This first course section starts by presenting two common data
representation models.

The entity-relationship (ER) model
The relational model Note slightly different naming:

-relationship vs. relational

Data Manipulation
This is followed by some methods for manipulating data in the relational
model and using it to extract information.

Relational algebra
The tuple-relational calculus
The query language SQL

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Remember Relations as Tables?

Relational databases take as fundamental the idea of a relation, comprising
a schema and an instance.

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Schema

Fields (a.k.a. attributes, columns)

{Tuples
(a.k.a. records,

rows)

Absolutely everything in a relational database is built from relations and
operations upon them.
Every relational database is a linked collection of several tables like this:
often much wider, and sometimes very, very much longer.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Languages for Working with Relations

Once we have a quantity of structured data in the linked tables of a
relational model we may want to rearrange it, build new data structures,
and extract information through the use of queries.

To understand how this is done, we’ll look at three interlinked languages:

Relational Algebra
High-level mathematical operations for combining and processing
relational tables.

Tuple-Relational Calculus
A declarative mathematical notation for expressing queries over
structured data.

SQL
The standard programming language for writing queries on relational
databases.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Relational Algebra

Relational algebra is a high-level mathematical language for describing
certain operations on the schemas and tables of a relational model. Each
of these operations takes one or more tables, and returns another.

Basic operations: selection σ, projection π, renaming ρ
union ∪, difference −, cross-product ×

Derived operations: intersection ∩ and different kinds of join ./

Ted Codd gave a completeness proof showing that these operations were
enough to express very general kinds of query: so, with an efficient
implementation of these operations, you can answer all those queries.

Conversely, Codd’s result also shows that to implement any expressive
query language requires finding ways to carry out all of these operations.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Selection and Projection

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination

Selection picks out the rows of a table satisfying a logical predicate

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Selection and Projection

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination

Projection picks out the columns of a table by their field name.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Selection and Projection

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination

Combining selection and projection picks out a rectangular subtable.

πname,age(σage>18(Students)) = σage>18(πname,age(Students))

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Definitions

Selection
Relation σP(R) is the table of rows in R which satisfy predicate P.
Thus σP(R) has the same schema as R, but possibly lower cardinality.
Predicates like P, Q, . . . are made up of

Assertions about field values: (age > 18), (degree = "CS"), . . .
Logical combinations of these: (P ∨Q), (P ∧Q∧ ¬Q ′), . . .

Projection
Relation πa1,...,an(R) is the table of all tuples of the fields a1, . . . ,an taken
from the rows of R.
Thus πa1,...,an(R) usually has a lower-arity schema than R, and may also
have lower cardinality.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Colour Coding of Slides

Regular Substantive Slide

Selection
Relation σP(R) is the table of rows in R which satisfy predicate P.
Thus σP(R) has the same schema as R, but possibly lower cardinality.
Predicates like P, Q, . . . are made up of

Assertions about field values: (age > 18), (degree = "CS"), . . .
Logical combinations of these: (P ∨Q), (P ∧Q∧ ¬Q ′), . . .

Projection
Relation πa1,...,an(R) is the table of all tuples of the fields a1, . . . ,an taken
from the rows of R.
Thus πa1,...,an(R) usually has a lower-arity schema than R, and may also
have lower cardinality.

/ January 27, 2014

Announcement Slide !

Careers in IT
Job Fair

Wednesday 5 February 2014

Informatics Forum
1300–1600

http://is.gd/it_careers

Careers advice and stalls from 35+ local, national
and international employers

/ January 27, 2014

Bonus Off-Syllabus Slide +

Logical Operators

Truth TRUE > T tt 1
Falsity FALSE ⊥ F ff 0
Conjunction AND P ∧Q & && ∗ ∩ • .
Disjunction OR P ∨Q | || + ∪
Implication IMPLIES P ⇒ Q → ⊃
Equivalence IFF P ⇔ Q ↔ ≡
Negation NOT ¬P ! ∼

/ January 27, 2014

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Symbol Soup (1/2) +

Logical Operators

Truth TRUE > T tt 1
Falsity FALSE ⊥ F ff 0
Conjunction AND P ∧Q & && ∗ ∩ • .
Disjunction OR P ∨Q | || + ∪
Implication IMPLIES P ⇒ Q → ⊃
Equivalence IFF P ⇔ Q ↔ ≡
Negation NOT ¬P ! ∼

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Symbol Soup (2/2) +

Quantifiers ∀, ∃
Existential EXISTS ∃ ? ∃x.P(x) ∃x P(x) ∃x(P(x))

∃x ∈ A . P(x) ∃x : A . P(x)

Universal FORALL ∀ ! ∀x.P(x) ∀x P(x) ∀x(P(x))
∀x ∈ A . P(x) ∀x : A . P(x)

Set Comprehension

{ x | P(x) } { x | x ∈ A∧ P(x) } { x ∈ A | P(x) } { x : A | P(x) }

Compare Haskell list comprehension [x | x <− [1..20], even x].

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Brackets +

()
Parentheses Round brackets

[]
Brackets Square brackets

{ }
Braces Curly brackets

〈 〉
Chevrons Angle brackets

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Renaming

mn name age email
Students

ρS(mn→sid, email→address)Students
new table name

renaming list

sid name age address
S

Renaming changes the names of some or all fields in a table, giving a
schema of the same arity and type.
This can be used to avoid naming conflicts when combining tables.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Union

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math
s0489967 Basil 19 basil@inf
s9989232 Ophelia 24 oph@bio
s0289125 Michael 21 mike@geo

S1∪S2

Union combines the rows of two tables that have the same schema.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Difference

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0456782 John 18 john@inf
s0378435 Helen 20 helen@phys

S1-S2

Difference takes all the rows of one table which do not appear in another.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Intersection

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0412375 Mary 18 mary@inf
s0189034 Peter 22 peter@math

S1∩S2

Intersection takes all the rows of one table which do appear in another.

S1 ∩ S2 = S1 − (S1 − S2)

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Definitions

Union
Relation R1 ∪ R2 contains every tuple that appears in either R1 or R2.

Difference
Relation R1 − R2 contains every tuple that appears R1 but not in R2.

Intersection
Relation R1∩R2 contains every tuple that appears in R1 and also in R2.

In all of these cases the schemas of R1 and R2 must be compatible — all
the same fields with all the same types.

Intersection can be defined in terms of difference, but not the other way
around. (Try it and see)

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Cross Product

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

S1

code name year
inf1 Informatics 1 1

math1 Mathematics 1 1
R

year
1
1
1
1
1
1
1
1

mn name age email
s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

code name
inf1 Informatics 1

math1 Mathematics 1s0456782 John 18 john@inf
inf1 Informatics 1

math1 Mathematics 1
inf1 Informatics 1

math1 Mathematics 1
inf1 Informatics 1

math1 Mathematics 1

s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math
s0378435 Helen 20 helen@phys

S1×R

Cross product combines every row of one table with every row of another.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Definition

Cross product
For any relations R and S, the cross product R× S, also known as the
Cartesian product, is a relation defined as follows.

Schema
All the fields and types from R, plus all fields and types from S.
If necessary the renaming operation ρ can ensure none of these clash.

Rows
For every row (u1, . . . ,un) of R and every row (v1, . . . , vm) of S the
product R× S contains row (u1, . . . ,un, v1, . . . , vm).

The arity of R× S is the sum of the arities of R and S.
The cardinality of R× S is the product of the cardinalities of R and S.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Relational Join

The most commonly used relational operation is the join R ./P S which
combines cross-product with selection.

Rows in Join
For every row (u1, . . . ,un) of R and every row (v1, . . . , vm) of S the join
relation R ./P S contains row (u1, . . . ,un, v1, . . . , vm) if and only if that
tuple of values satisfies predicate P.

Here R and S are any two relations, with P any predicate defined on the
fields of R and S together

R ./P S = σP(R× S)

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Example of Join

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students
Takes

inf1 80
math1 70

s0412375
s0378435

code markmn

code markmnmn name age email
s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

inf1 80
math1 70

s0412375
s0378435s0456782 John 18 john@inf

inf1 80
math1 70

s0412375
s0378435s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math

s0378435 Helen 20 helen@phys
inf1 80
math1 70

s0412375
s0378435

inf1 80
math1 70

s0412375
s0378435

σStudents.mn = Takes.mn(Students × Takes)

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Example of Join

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students
Takes

inf1 80
math1 70

s0412375
s0378435

code markmn

code markmnmn name age email
s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

inf1 80
math1 70

s0412375
s0378435s0456782 John 18 john@inf

inf1 80
math1 70

s0412375
s0378435s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math

s0378435 Helen 20 helen@phys
inf1 80
math1 70

s0412375
s0378435

inf1 80
math1 70

s0412375
s0378435

Students ⋈Students.mn = Takes.mn Takes

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Refined Joins

In general, a join R ./P S can use an arbitrary predicate P.
However, some kinds of predicate are particularly common, and often
followed by projection to eliminate duplicate or redundant columns.

Equijoin
An equijoin starts with a join where the predicate states that particular
fields from each relation must be equal.
That is, P has the form (a1 = b1)∧ · · ·∧ (ak = bk) for some fields
a1, . . .ak of R and b1, . . . ,bk of S.
For example, the relation (Students ./Students.mn=Takes.mn Takes) above.
The equijoin then projects onto all columns of the product except
b1, . . . ,bk, as they now duplicate a1, . . . ,ak.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Refined Joins

Natural Join
The natural join R ./ S of relations R and S is the equijoin requiring
equalities between any fields in the two relations that share the same name.
For example, the natural join of the “Students” and “Takes” relations:

Students ./ Takes =
πmn,name,age,
email,code,mark

(σStudents.mn=Takes.mn(Students× Takes))

This records every student in combination with every course they take.
This example is typical: a natural join between two tables where one has a
foreign key constraint referring to the other.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

Specialist Joins +

The SQL standard defines no less than five different types of join.

Inner Join is the basic join R ./P S described earlier.
Left Outer Join is the basic join, plus rows for every tuple in the left-hand

table R that matches nothing in the right-hand table S. Missing
fields are filled with NULL.

Right Outer Join is the basic join plus rows for every tuple in the
right-hand table S that matches nothing in the left-hand
table R. Missing fields are filled with NULL.

Full Outer Join has every row from all three previous joins.
Cross Join is the cross-product R× S, with every tuple from R paired with

every tuple from S, and no matching done at all.

Ian Stark Inf1-DA / Lecture 5 2014-01-28

