
http://www.inf.ed.ac.uk/teaching/courses/inf1/da

Informatics 1: Data & Analysis
Lecture 10: Structuring XML

Ian Stark

School of Informatics
The University of Edinburgh

Friday 14 February 2013
Semester 2 Week 5

http://www.inf.ed.ac.uk/teaching/courses/inf1/da
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Teaching Weeks !

This is Inf1-DA Lecture 10, in Week 5.

Next week is Innovative Learning Week (ILW). All lectures, tutorials, labs
and coursework are suspended for the week, and replaced by a series of
alternative events across the University.

http://www.ed.ac.uk/innovative-learning

Check the ILW calendar and sign up now: some activities run all week,
some are one-off events.

The week after that, from Monday 24 February, is Teaching Week 6.

Not all courses have noticed that this is the week numbering scheme.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

http://www.ed.ac.uk/innovative-learning
http://ilwcalendar.co.uk/?page_id=6

Lecture Plan

XML
We start with technologies for modelling and querying semistructured data.

Semistructured Data: Trees and XML
Schemas for structuring XML
Navigating and querying XML with XPath

Corpora
One particular kind of semistructured data is large bodies of written or
spoken text: each one a corpus, plural corpora.

Corpora: What they are and how to build them
Applications: corpus analysis and data extraction

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Sample Semistructured Data

/

Gazetteer

Data for other countriesCountry

Region

Feature

@type=“Mountain”

Spik

Feature

@type=“Mountain”

Triglav

Feature

@type=“Lake”

Bohinj

Name

Gorenjska

Capital

Ljubljana

Population

2,020,000

Name

Slovenia

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Sample Semistructured Data in XML

<?xml version="1.0" encoding="UTF−8"?>
<Gazetteer>

<Country>
<Name>Slovenia</Name>
<Population>2,020,000</Population>
<Capital>Ljubljana</Capital>
<Region>

<Name>Gorenjska</Name>
<Feature type="Lake">Bohinj</Feature>
<Feature type="Mountain">Triglav</Feature>
<Feature type="Mountain">Spik</Feature>

</Region>
</Country>
<!−− data for other countries here −−>

</Gazetteer>

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Structuring XML

There are a number of basic constraints on XML files, such as proper use
of syntax and correctly nesting the tags around elements.

A file satisfying these constraints is a well-formed XML document. These
are to some extent self-describing:

The tree structure can always be extracted from textual nesting;
Elements are always given with their complete name;
Attributes are all named;
Everything else is unstructured text.

This is useful as far as it goes, but is fairly rudimentary.

In any given application domain, there may well be a much stricter
intended structure which XML documents should follow.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Structuring XML

In any given application domain, there may well be a much stricter
intended structure which XML documents should follow.

For example, in the Gazetteer we expect a certain hierarchy:

The Gazetteer element contains Country elements;

A Country contains information about its Name, Population and
Capital, together with some Region elements.

A Region includes its Name and zero or more Feature elements.

Every Feature will include a suitable type attribute.

We specify this kind of expected structure with a schema.

Greek σχημα, with plural “schemata” now almost entirely abandoned in favour of “schemas”

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Schema Languages for XML

In relational databases, a schema specifies the content of a relation.

A schema language for XML is any language for specifying similar kinds of
structure in XML documents. There are a number of different schema
languages in common use.

Using a formal schema language means:

Schemas are precise and unambiguous;
A machine can validate whether or not a document satisfies a certain
schema.

If a well-formed XML document D matches the format specified by
schema S then we say D is valid with respect to S.

One document may be valid with respect to several different schemas; it is
also possible to have an XML document that is well-formed but not valid.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Document Type Definitions

Document Type Definition or DTD is a basic schema mechanism for XML.

The DTD schema language is simple, widely used, and has been an
integrated feature of XML since its inception.

A DTD includes information about:

Which elements can appear in a document;

The attributes of those elements;

The relationship between different elements such as their order,
number, and possible nesting.

We illustrate this by going through a sample DTD for a gazetteer, against
which the Slovenian example seen earlier can be validated.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Example DTD

<!DOCTYPE Gazetteer [

<!ELEMENT Gazetteer (Country+)>
<!ELEMENT Country (Name,Population,Capital,Region∗) >
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Population (#PCDATA)>
<!ELEMENT Capital (#PCDATA)>
<!ELEMENT Region (Name,Feature∗) >
<!ELEMENT Feature (#PCDATA)>

<!ATTLIST Feature type CDATA #REQUIRED>
]>

Some think DTD syntax a little ugly

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Dissecting a DTD

Every DTD is a list of individual declarations framed within a DOCTYPE
declaration:

<!DOCTYPE name [

Element declaration
...
Attribute declaration
...
Element declaration
...

]>

Here name identifies the document type we are declaring. Also, any XML
document matching the DTD must have a name element as its root.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Dissecting a DTD

Every DTD is a list of element and attribute declarations.

<!ELEMENT Gazetteer (Country+)>

This declares that the Gazetteer element consists of one or more Country
elements.

<!ELEMENT Country (Name,Population,Capital,Region∗)>

This declares that a Country element consists of one Name element,
followed by one Population element, followed by one Capital element,
followed by zero or more Region elements, all in that order.

<!ELEMENT Name (#PCDATA)>

This declares that the Name element contains text. The keyword
#PCDATA stands for “parsed character data”.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Dissecting a DTD

Every DTD is a list of element and attribute declarations.

<!ELEMENT Gazetteer (Country+)>

This declares that the Gazetteer element consists of one or more Country
elements.

<!ELEMENT Country (Name,Population,Capital,Region∗)>

This declares that a Country element consists of one Name element,
followed by one Population element, followed by one Capital element,
followed by zero or more Region elements, all in that order.

<!ELEMENT Name (#PCDATA)>

This declares that the Name element contains text. The keyword
#PCDATA stands for “parsed character data”.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Dissecting a DTD

Every DTD is a list of element and attribute declarations.

<!ELEMENT Gazetteer (Country+)>

This declares that the Gazetteer element consists of one or more Country
elements.

<!ELEMENT Country (Name,Population,Capital,Region∗)>

This declares that a Country element consists of one Name element,
followed by one Population element, followed by one Capital element,
followed by zero or more Region elements, all in that order.

<!ELEMENT Name (#PCDATA)>

This declares that the Name element contains text. The keyword
#PCDATA stands for “parsed character data”.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Dissecting a DTD

Every DTD is a list of element and attribute declarations.

<!ELEMENT Gazetteer (Country+)>

This declares that the Gazetteer element consists of one or more Country
elements.

<!ELEMENT Country (Name,Population,Capital,Region∗)>

This declares that a Country element consists of one Name element,
followed by one Population element, followed by one Capital element,
followed by zero or more Region elements, all in that order.

<!ELEMENT Name (#PCDATA)>

This declares that the Name element contains text. The keyword
#PCDATA stands for “parsed character data”.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Dissecting a DTD

<!ELEMENT Region (Name,Feature∗)>

This declares that a Region element consists of one Name followed by zero
or more Feature elements.

<!ELEMENT Feature (#PCDATA)>

This declares that the Feature element contains just text.

<!ATTLIST Feature type CDATA #REQUIRED>

This declares that the Feature element must have an attribute called type,
and that the value of the attribute should be a text string (CDATA stands
for “character data”).

Why #PCDATA and CDATA? Historical reasons. Please don’t ask.
There are precise explanations, but it’s hair-splitting.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Dissecting a DTD

<!ELEMENT Region (Name,Feature∗)>

This declares that a Region element consists of one Name followed by zero
or more Feature elements.

<!ELEMENT Feature (#PCDATA)>

This declares that the Feature element contains just text.

<!ATTLIST Feature type CDATA #REQUIRED>

This declares that the Feature element must have an attribute called type,
and that the value of the attribute should be a text string (CDATA stands
for “character data”).

Why #PCDATA and CDATA? Historical reasons. Please don’t ask.
There are precise explanations, but it’s hair-splitting.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Dissecting a DTD

<!ELEMENT Region (Name,Feature∗)>

This declares that a Region element consists of one Name followed by zero
or more Feature elements.

<!ELEMENT Feature (#PCDATA)>

This declares that the Feature element contains just text.

<!ATTLIST Feature type CDATA #REQUIRED>

This declares that the Feature element must have an attribute called type,
and that the value of the attribute should be a text string (CDATA stands
for “character data”).

Why #PCDATA and CDATA? Historical reasons. Please don’t ask.
There are precise explanations, but it’s hair-splitting.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Element Declarations

An element declaration has this form:

<!ELEMENT elementName contentType>

There are four possible content types.

1 EMPTY indicating that the element has no content.
2 ANY meaning that any content is allowed

(Elements nested within this still need their own declarations).
3 Mixed content where the element contains text, and possibly also

child elements.
4 A child declaration using a regular expression.

See the next slide for more on mixed content and regular expressions. . .

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Element Declarations

An mixed content element declaration has one of these forms:

<!ELEMENT elementName (#PCDATA) >

<!ELEMENT elementName (#PCDATA | child | child | ...)∗ >

The first of these means that the element can contain arbitrary text as a
child node, but no further element nodes.

The second form allows text interspersed with any of the child element
nodes named in the declaration, in any order.

The “∗” is literal XML syntax, indicating possible repetitions; the ellipsis “ ... ” is
not XML syntax, it’s there to indicate that the declaration may mention any
number of different child elements.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Element Declarations

A child declaration uses regular expressions to indicate what element
combinations are valid as children of elementName.

<!ELEMENT elementName (regexp) >
<!ELEMENT elementName (regexp)? >
<!ELEMENT elementName (regexp)∗ >
<!ELEMENT elementName (regexp)+ >

The regexp can be built from any of the following, nested as required:

A single element name: just that element matches.
re1, re2 : content matching re1 followed by more matching re2 .
re1 | re2 : content matching either re1 or re2 .
Any of these followed by ?, ∗ or + for zero-or-one, zero-or-more, or
one-or-more repetitions, respectively.
Any of these in parentheses (re), needed to avoid ambiguity.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Attribute Declarations

Attributes of an element are declared separately to the element itself.

<!ATTLIST elementName attName attType attDefault ... >

This defines one or more attributes for the named element. Multiple
attributes can either be defined all together, using the ... here, or one at a
time in several separate declarations.

Each attribute has three items declared:

attName is the attribute name

attType is a datatype for the value of the attribute.

attDefault indicates whether the attribute is required or optional, and
may specify a default value.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Attribute Datatypes and Defaults

Possible datatype declarations for attributes include:

String: CDATA means that the attribute may take any string value.

Enumeration: (s1 | s2 | . . . | sk) indicates the attribute value must
be one of the strings s1, s2, . . . , sk.

Other possibilities are various technical kinds of entities and tokens.

The attDefault declaration can be any of:

#REQUIRED meaning that the attribute must always be given a
value in the start tag for that element.

#IMPLIED meaning that the attribute may be given a value, but it
isn’t essential.

Giving a particular string means that value is the default for the
attribute, unless otherwise declared in the element start tag.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Example DTD

<!DOCTYPE Gazetteer [

<!ELEMENT Gazetteer (Country+) >
<!ELEMENT Country (Name,Population,Capital,Region∗) >
<!ELEMENT Name (#PCDATA) >
<!ELEMENT Population (#PCDATA) >
<!ELEMENT Capital (#PCDATA) >
<!ELEMENT Region (Name,Feature∗) >
<!ELEMENT Feature (#PCDATA) >

<!ATTLIST Feature type CDATA #REQUIRED>
]>

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Variation
We could replace the original Feature attribute declaration

<!ATTLIST Feature type CDATA #REQUIRED>
with an alternative

<!ATTLIST Feature type (Mountain|Lake|River) "Mountain">

This declares a specific list of feature types, and also a default

The original Gazetteer would still validate against this, and so would this:

<Feature>Ben Nevis</Feature>

which would receive the default type of Mountain.

However, something like

<Feature type="Castle">Eilean Donan</Feature>

would be valid under the old declaration — which accepts any text as a
feature type — but not under the new one.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Character Sets +

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Linking Document and DTD

An XML document can use a Document Type Declaration to state what
DTD (document type definition) schema should be used to validate the
document.

The most common way to connect a document with a DTD is by giving
an external link:

<!DOCTYPE rootName SYSTEM "URI">

where rootName is the name of the root element and URI is a uniform
resource identifier (usually an http:// URL, but there are other kinds).

It’s also possible to include a complete DTD within the XML document
itself

<!DOCTYPE rootName [DTD]>

Here the entire DTD text is placed within the brackets [...] .

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Inline DTD

<?xml version="1.0" encoding="UTF−8"?>

<!DOCTYPE Gazetteer [
<!ELEMENT Gazetteer (Country+)>
<!ELEMENT Country (Name,Population,Capital,Region∗) >
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Population (#PCDATA)>
<!ELEMENT Capital (#PCDATA)>
<!ELEMENT Region (Name,Feature∗) >
<!ELEMENT Feature (#PCDATA)>
<!ATTLIST Feature type CDATA #REQUIRED>
]>

<Gazetteer>
<!−− Information about countries, regions and features −−>

</Gazetteer>
Ian Stark Inf1-DA / Lecture 10 2013-02-14

DTD Limitations

One of the strengths of the DTD mechanism is its simplicity.

However, it is inexpressive in ways that limit its usefulness. For example:

Elements and attributes cannot be assigned datatypes beyond text
and simple enumerations.

It is impossible to place constraints on data values.

Element constraints apply to only one element at a time, not to sets
of related elements in the document tree.

These and other issues have led to the development of more powerful XML
schema languages, such as XML Schema, Relax NG and Schematron.

However, all of these languages retain the common idea of a schema
against which an XML document may be validated.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Publishing Relational Data as XML

XML works well for publishing data online; in particular, it’s often used to
publish the content of relational database tables.

A key motivation for this is that the simple text format makes the data
easily readable and robustly transferable across platforms.

Look up Postel’s law

The generality and flexibility of the XML format means that there are
many different ways to translate relational data into XML.

We illustrate one possible approach using, again, the example data on
students taking courses.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Students and Courses

/

University

Taking

. . .Takes

mark

71

code

inf1

mn

s0456782

Takes

mark

82

code

math1

mn

s0412375

Courses

. . .Course

year

1

name

Informatics 1

code

math1

Students

. . .Student

email

john@inf

age

18

name

John

mn

s0456782

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Students and Courses
<University>
<Students>
<Student>
<mn>s0456782</mn><name>John</name>
<age>18</age><email>john@inf</email>

</Student>
...

</Students>
<Courses>
<Course>
<code>inf1</code><name>Informatics 1</name><year>1</year>

</Course>
<Course>
<code>math1</code><name>Mathematics 1</name><year>1</year>

</Course>
...

</Courses>
<Taking>
<Takes><mn>s0412375</mn><code>math1</code><mark>82</mark></Takes>
<Takes><mn>s0456782</mn><code>inf1</code><mark>71</mark></Takes>
...

</Taking>
</University>

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Students and Courses

<!DOCTYPE University [
<!ELEMENT University (Students,Courses,Taking)>
<!ELEMENT Students (Student)∗>
<!ELEMENT Student (mn,name,age,email)>
<!ELEMENT Courses (Course)∗>
<!ELEMENT Course (code,name,year)>
<!ELEMENT Taking (Takes)∗>
<!ELEMENT Takes (mn,name,mark)>
<!ELEMENT mn (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT code (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT mark (#PCDATA)>
]>

Ian Stark Inf1-DA / Lecture 10 2013-02-14

Efficiency Concerns

Relational database systems are typically optimised for highly efficient data
storage and querying.

In contrast, representing relational data in XML is extremely verbose. As a
transport mechanism, though, it is clear and robust. So it can make sense
to expand relational database tables into XML for communication: once
downloaded, they can be converted back to relational form for a local
database system to organise efficient storage and query.

As it happens, ample repetition means that even during transmission XML
text compresses well using on-the-fly compression techniques. However, in
that compressed form it’s not suitable for querying.

There are more recent technologies for compressing XML using knowledge
of its structure, in ways that allow efficient querying of the compressed
document. These techniques enable true XML databases.

Ian Stark Inf1-DA / Lecture 10 2013-02-14

