
http://www.inf.ed.ac.uk/teaching/courses/inf1/da

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Informatics 1: Data & Analysis
Lecture 6: Tuple Relational Calculus

Ian Stark

School of Informatics
The University of Edinburgh

Friday 1 February 2013
Semester 2 Week 3

http://www.inf.ed.ac.uk/teaching/courses/inf1/da
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Lecture Plan

Data Representation
This first course section starts by presenting two common data
representation models.

The entity-relationship (ER) model
The relational model

Data Manipulation
This is followed by some methods for manipulating data in the relational
model and using it to extract information.

Relational algebra
The tuple-relational calculus
The query language SQL

Ian Stark Inf1-DA / Lecture 6 2013-02-01

The State We’re In

Relational models
Relations: Tables matching schemas
Schema: A set of field names and their domains
Table: A set of tuples of values matching these fields

Relational algebra
A high-level mathematical language of operations on relational tables.
Each operation takes one or more tables, and returns another.

selection σ, projection π, renaming ρ, union ∪, difference −,
cross-product ×, intersection ∩ and different kinds of join ./

Tuple relational calculus (TRC)
A declarative mathematical notation for writing queries: specifying
information to be drawn from the linked tables of a relational model.

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Simple Example

All records for students more than 18 years old

{ S | S ∈ Students ∧ S.age > 18 }

The set of tuples S such that S is in the table “Students” and has
component “age” least 18.

This is like list comprehension in Haskell

[s | s <- students, age s > 18]

and similar constructions in other languages.

All are based on “comprehensions” in set theory

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Tuple Relational Calculus Basics

Queries in TRC have the general form

{ T | P(T) }

where T is a tuple variable and P(T) is a logical formula.

Every tuple variable such as T has a schema, like rows in a relational table,
with fields and their domains. In practice, the details of the schema are
usually inferred from the way T appears in P(T).

A tuple variable ranges over all possible tuple values matching its schema.

The result of the query
{ T | P(T) }

is then the set of all possible tuple values for T such that P(T) is true.

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Another Example

Names and ages of all students over 20

{ T | ∃S . S ∈ Students ∧ S.age > 20
∧ T .name = S.name ∧ T .age = S.age }

The set of tuples T such that there is an S in table “Students” with
component “age” at least 20 and where S and T have the same values
for “name” and “age”.

Tuple variable S has schema matching the table “Students”.
Tuple variable T has (only) fields “name” and “age”, with domains to
match those of S.
Even if S has other fields, they do not appear in T or the overall result.

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Formula Syntax

Inside TRC expression {T | P(T)} the logical formula P(T) may be quite
long, but is built up from standard logical components.

Simple assertions: (T ∈ Table), (T .age > 65), (S.name = T .name), . . .

Logical combinations: (P ∨Q), (P ∧Q∧ ¬Q ′), . . .

Quantification:

∃S . P(S) There exists a tuple S such that P(S)
∀T . Q(T) For all tuples T it is true that Q(T)

For convenience, we require that for ∃S . P(S) the variable S must actually
appear in P(S); and the same for ∀T . Q(T). We also write:

∃S ∈ Table . P(S) to mean ∃S . S ∈ Table∧ P(S)

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Students and Courses (1/5)

mn code mark
s0456782 inf1 80
s0412375 geo1 78
s0412375 inf1 56
s0189034 math1 62

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

code name year
inf1 Informatics 1 1

math1 Mathematics 1 1
geo1 Geology 1 1
dbs Database Systems 3
adbs Advanced Databases 4

Referenced relations

Referencing relation

Primary key
Foreign key

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Students and Courses (1/5)

Students taking Informatics 1

{ R | ∃S ∈ Students . ∃T ∈ Takes . ∃C ∈ Courses .
C.name = "Informatics 1" ∧ C.code = T .code
∧ T .mn = S.mn ∧ S.name = R.name }

Schema for S, T and C match those of the tables from which they are
drawn. The schema for result R is a single field “name” with string
domain, because that’s all that appears here.

One way to compute this in relational algebra:

πname((Students ./ Takes) ./ (σname="Informatics 1"(Courses)))

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Relational Algebra
The relational algebra expression can be rearranged without changing its
value, but possibly affecting the time and memory needed for computation:

πname((Students ./ Takes) ./ (σname="Informatics 1"(Courses)))
πname(Students ./ (Takes ./ (σname="Informatics 1"(Courses))))
πname(Students ./ ((σname="Informatics 1"(Courses)) ./ Takes))

We can also visualise this as rearrangements of a tree:

Students Takes

⋈Students.mn = Takes.mn

⋈Takes.code = Courses.code

πStudents.name

σname=’Informatics 1’

Courses

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Students and Courses (2/5)

Courses taken by students called “Joe”

{ R | ∃S ∈ Students, T ∈ Takes,C ∈ Courses .
S.name = "Joe" ∧ S.mn = T .mn
∧ C.code = T .code ∧ C.name = R.name }

Note the slightly abbreviated syntax for multiple quantification: we use
comma-separated ∃.., .., .. instead of ∃..∃..∃..

Computing this in relational algebra:

πname((Courses ./ Takes) ./ (σname="Joe"(Students)))

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Students and Courses (3/5)

Students taking Informatics 1 or Geology 1

{ R | ∃S ∈ Students, T ∈ Takes,C ∈ Courses .
(C.name = "Informatics 1"∨ C.name = "Geology 1")
∧ C.code = T .code ∧ T .mn = S.mn ∧ S.name = R.name }

Now the logical formula becomes a little more elaborate.

Computing this in relational algebra:

πname((Students ./ Takes) ./ (σname="Informatics 1"(Courses)))
∪ πname((Students ./ Takes) ./ (σname="Geology 1"(Courses)))

πname((Students ./ Takes) ./ (σ(name="Informatics 1"∨name="Geology 1")(Courses)))
Ian Stark Inf1-DA / Lecture 6 2013-02-01

Students and Courses (4/5)

Students taking both Informatics 1 and Geology 1

{ R | ∃S ∈ Students, T , T ′ ∈ Takes,C,C ′ ∈ Courses .
C.name = "Informatics 1" ∧ C.code = T .code ∧ T .mn = S.mn
C ′.name = "Geology 1" ∧ C ′.code = T ′.code ∧ T ′.mn = S.mn
∧ S.name = R.name }

Computing this in relational algebra:

πname((Students ./ Takes) ./ (σname="Informatics 1"(Courses)))
∩ πname((Students ./ Takes) ./ (σname="Geology 1"(Courses)))

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Students and Courses (5/5)

Students taking no courses

{ R | ∃S ∈ Students . S.name = R.name ∧ ∀T ∈ Takes . T .mn 6= S.mn

Computing this in relational algebra:

πname(Students− πname,mn(Students ./ Takes))

? Challenge: why not one of these instead?

πname(Students− (Students ./ Takes))

πname(Students) − πname(Students ./ Takes))

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Relational Algebra vs. Tuple Relational Calculus

Codd gave a proof that relational algebra and TRC are equally expressive:
anything expressed in one language can also be written in the other.

So why have both?

They give different perspectives and allow the following approach:

Use relational calculus to specify the information wanted;
Translate into relational algebra to give a procedure for computing it;
Rearrange the algebra to make that procedure efficient.

The database language SQL is based on the calculus: well-suited to giving
logical specifications, independent of any eventual implementation.

The algebra beneath it is good for rewriting, equations, and calculation.

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Domain-Specific Languages

Charles V, 1500–1558
Holy Roman Emperor, King of
Spain, Archduke of Austria

“I speak Spanish to God, Italian to women,
French to men and German to my horse.”

Attributed, but even Wikipedia is sceptical.

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Domain-Specific Languages

Charles V, 1500–1558
Holy Roman Emperor, King of
Spain, Archduke of Austria

“I speak Spanish to God, Italian to women,
French to men and German to my horse.”

Attributed, but even Wikipedia is sceptical.

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Domain-Specific Languages

Charles V, 1500–1558
Holy Roman Emperor, King of
Spain, Archduke of Austria

“I speak Spanish to God, Italian to women,
French to men and German to my horse.”

Attributed, but even Wikipedia is sceptical.

Ian Stark Inf1-DA / Lecture 6 2013-02-01

Query Optimization

... Rearrange the algebra to make that procedure efficient.

This last part is central to the viability of modern large databases. An
effective query optimizer will draw up a list of possible query plans and
compare the costs of all of them, taking account of:

How much data there is, where it is, how it is arranged;
What indexes are available, for which tables, and where they are;
Selectivity: estimates of how many rows a subquery will return;
Estimated size of any intermediate tables;
What parts can be done in parallel;
What I/O and computing resources are available;
. . .

Ian Stark Inf1-DA / Lecture 6 2013-02-01

