Informatics 1: Data & Analysis Lecture 18: Hypothesis Testing and Correlation

Ian Stark

School of Informatics The University of Edinburgh

Tuesday 26 March 2013 Semester 2 Week 10

http://www.inf.ed.ac.uk/teaching/courses/inf1/da

Data Retrieval

- The information retrieval problem
- The vector space model for retrieving and ranking

Statistical Analysis of Data

- Data scales and summary statistics
- Hypothesis testing and correlation
- χ^2 tests and collocations also *chi-squared*,

also chi-squared, pronounced "kye-squared"

The previous lecture looked at summary statistics which give information about a single set of data values. Often we have multiple linked sets of values: several pieces of information about each of many individuals.

This kind of *multi-dimensional* data is usually treated as several distinct *variables*, with statistics now based on several variables rather than one.

Example Data										
		A	В	С	D	Е	F	G	Н	
	Study	0.5	1	1.4	1.2	2.2	2.4	3	3.5	
	Drinking	25	20	22	10	14	5	2	4	
	Eating	4	7	4.5	5	8	3.5	6	5	
	Exam	16	35	42	45	60	72	85	95	

The table below presents for each of eight hypothetical students (A-H), the time in hours they spend each week on: studying for Inf1-DA (outside lectures and tutorials), drinking and eating. This is juxtaposed with their Data & Analysis exam results.

Here we have four variables: studying, drinking, eating and exam results.

Example Data										
		A	В	С	D	Е	F	G	Н	
	Study	0.5	1	1.4	1.2	2.2	2.4	3	3.5	
	Drinking	25	20	22	10	14	5	2	4	
	Eating	4	7	4.5	5	8	3.5	6	5	
	Exam	16	35	42	45	60	72	85	95	

We can ask whether there is any observed relationship between the values of two different variables.

If there is no relationship, then the variables are said to be *independent*.

If there is a relationship, then the variables are said to be *correlated*.

Two variables are *causally* connected if variation in the first causes variation in the second. If this is so, then they will also be correlated. However, the reverse is not true:

Correlation Does Not Imply Causation

Correlation Does Not Imply Causation

If we do observe a correlation between variables X and Y, it may due to any of several things.

- Variation in X causes variation in Y, either directly or indirectly.
- Variation in Y causes variation in X, either directly or indirectly.
- Variation in X and Y is caused by some third factor Z.
- Coincidence

Examples?

Famous examples of correlations which may not be causal.

- Salaries of Presbyterian ministers in Massachusetts
- The price of rum in Havana
- Regular smoking
- Lower grades at university
- The quantity of apples imported into the UK
- The rate of divorce in the UK

Nonetheless, statistical analysis can still serve as evidence of causality:

- Postulate a causative mechanism, propose a hypothesis, make predictions, and then look for a correlation in data;
- Propose a hypothesis, repeat experiments to confirm or refute it.

Examples?

Famous examples of correlations which may not be causal.

- Salaries of Presbyterian ministers in Massachusetts
- The price of rum in Havana
- Regular smoking
- Lower grades at university
- The quantity of apples imported into the UK
- The rate of divorce in the UK

Nonetheless, statistical analysis can still serve as evidence of causality:

- Postulate a causative mechanism, propose a hypothesis, make predictions, and then look for a correlation in data;
- Propose a hypothesis, repeat experiments to confirm or refute it.

Visualizing Correlation

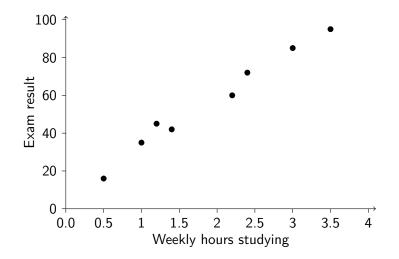
One way to discover correlation is through human inspection of some data visualisation.

For data like that below, we can draw a *scatter plot* taking one variable as the x-axis and one the y-axis and plotting a point for each item of data.

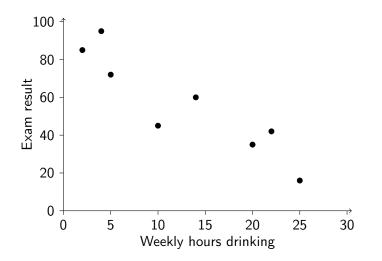
We can then look at the plot to see if we observe any correlation between variables.

Example Data									
	А	В	С	D	Е	F	G	Н	
Study	0.5	1	1.4	1.2	2.2	2.4	3	3.5	
Drinking	25	20	22	10	14	5	2	4	
Eating	4	7	4.5	5	8	3.5	6	5	
Exam	16	35	42	45	60	72	85	95	

Studying vs. Exam Results



Drinking vs. Exam Results



Eating vs. Exam Results



The previous visualisations of data suggested hypotheses about possible correlations between variables.

There are many other ways to formulate hypothesis. For example:

- From a proposed underlying mechanism;
- Analogy with another situation where some relation is known to exist;
- Based on the predictions of a theoretical model.

Statistical tests provide the mathematical tools to confirm or refute such hypotheses.

Most statistical testing starts from a specified *null hypothesis*, that there is nothing out of the ordinary in the data.

We then compute some statistic from the data, giving result R.

For this result R we calculate a *probability value* p.

The value p represents the chance that we would obtain a result like R if the null hypothesis were true.

Note: p is not a probability that the null hypothesis is true. That is not a quantifiable value.

The probability value p represents the chance that we would obtain a result like R if the null hypothesis were true.

If the value of p is small, then we conclude that the null hypothesis is a poor explanation for the observed data.

Based on this we might *reject* the null hypothesis.

Standard thresholds for "small" are p < 0.05, meaning that there is less than 1 chance in 20 of obtaining the observed result by chance, if the null hypothesis is true; or p < 0.01, meaning less than 1 chance in 100.

This idea of testing for *significance* is due to R. A. Fisher (1890–1962).

Ben Goldacre.

Bad Pharma: How Drug Companies Mislead Doctors and Harm Patients.

Fourth Estate, 2012.

Correlation Coefficient

The *correlation coefficient* is a statistical measure of how closely one set of data values x_1, \ldots, x_N are correlated with another y_1, \ldots, y_N .

Take μ_x and σ_x the mean and standard deviation of the x_i values. Take μ_y and σ_y the mean and standard deviation of the y_i values.

The correlation coefficient $\rho_{x,y}$ is then computed as:

$$\rho_{x,y} = \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N \sigma_x \sigma_y}$$

Values of $\rho_{x,y}$ always lie between -1 and 1.

If $\rho_{x,y}$ is close to 0 then this suggests there is no correlation. If $\rho_{x,y}$ is nearer +1 then this suggests x and y are *positively correlated*. If $\rho_{x,y}$ is closer to -1 then this suggests x and y are *negatively correlated*.

Correlation Coefficient as a Statistical Test

In a test for correlation between two variables x and y — such as study hours and exam results — we are looking to see whether the variables are correlated; and if so in what direction.

The null hypothesis is that there is no correlation.

We calculate the correlation coefficient $\rho_{x,y}\text{,}$ and then do one of two things:

- Look in a table of *critical values* for this statistic, to see whether the value we have is significant;
- Compute the probability value p for this statistic, to see whether it is small.

Depending on the result, we may reject the null hypothesis.

Critical Values for Correlation Coefficient

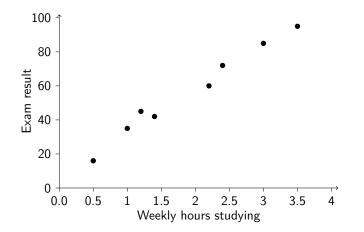
ρ	p = 0.10	p = 0.05	p = 0.01	p = 0.001	
N = 7	0.669	0.754	0.875	0.951	
N = 8	0.621	0.707	0.834	0.925	
N = 9	0.582	0.666	0.798	0.898	
N = 10	0.549	0.632	0.765	0.872	

This table has rows indicating the critical values of p for depending on the number of data items N in the series being compared.

It shows that for N=8 uncorrelated data items a value of $|\rho_{x,y}|>0.834$ has probability p<0.01 of occurring.

In the same way for N=8 uncorrelated data items a value of $|\rho_{x,y}|>0.925$ has probability p<0.001 of occurring, less than one chance in a thousand.

Studying vs. Exam Results



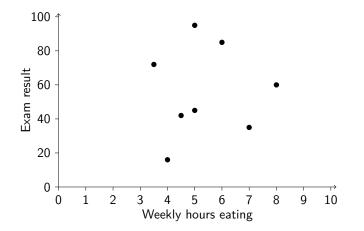
The correlation coefficient is $\rho_{study,exam} = 0.990$, well above the critical value 0.925 for p < 0.001 and strongly indicating positive correlation.

Drinking vs. Exam Results



The correlation coefficient is $\rho_{drink,exam}=-0.914$, beyond the critical value 0.834 for p<0.01 and indicating negative correlation.

Eating vs. Exam Results



The correlation coefficient is $\rho_{eat,exam} = 0.074$, far less than any critical value and indicating no significant correlation.

Suppose that we have sample data x_1, \ldots, x_n and y_1, \ldots, y_n drawn from a much larger population of size N, so $n \ll N$.

Calculate m_x and m_y the estimates of the population means. Calculate s_x and s_y the estimates of the population standard deviations.

Then an estimate $r_{x,y}$ of the correlation coefficient in the population is:

$$r_{x,y} = \frac{\sum_{i=1}^{n} (x_i - m_x)(y_i - m_y)}{(n-1)s_x s_y}$$

The correlation coefficient is sometimes called *Pearson's correlation coefficient*, particularly when it is estimated from a sample using the formula above.

One-Tail and Two-Tail Tests

There are two subtly different ways to apply the correlation coefficient.

- Two-tailed test: Looking for a correlation of any kind, positive or negative, either is significant.
- One-tailed test: Looking for a correlation of just one kind (say, positive) and only this is significant.

We have been using two-tailed tests. The choice of test affects the critical value table: in general, a one-tailed test requires a lower critical value for significance.

two-tail	p = 0.10	p = 0.05	p = 0.01	p = 0.001
one-tail	p = 0.05	p = 0.025	p = 0.005	p = 0.0005
N = 7	0.669	0.754	0.875	0.951
N = 8	0.621	0.707	0.834	0.925
N = 9	0.582	0.666	0.798	0.898
N = 10	0.549	0.632	0.765	0.872

Read Wikipedia on The German Tank Problem

If you like that then try this.

T. W. Körner. *The Pleasures of Counting*. Cambridge University Press, 1996.

Borrow a copy from the Murray Library, King's Buildings, QA93 Kor.