
http://www.inf.ed.ac.uk/teaching/courses/inf1/da

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Informatics 1: Data & Analysis
Lecture 11: Navigating XML using XPath

Ian Stark

School of Informatics
The University of Edinburgh

Tuesday 26 February 2013
Semester 2 Week 6

http://www.inf.ed.ac.uk/teaching/courses/inf1/da
http://www.ed.ac.uk
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


Lecture Timing

This is Inf1-DA Lecture 11, in Week 6.

There is no Inf1-DA lecture on Friday, 1 March.

Inf1-DA Lecture 12 is on Tuesday 5 March, in Week 7.

Normal service then resumes.

Ian Stark Inf1-DA / Lecture 11 2013-02-26



Lecture Plan

XML
We start with technologies for modelling and querying semistructured data.

Semistructured Data: Trees and XML
Schemas for structuring XML
Navigating and querying XML with XPath

Corpora
One particular kind of semistructured data is large bodies of written or
spoken text: each one a corpus, plural corpora.

Corpora: What they are and how to build them
Applications: corpus analysis and data extraction

Ian Stark Inf1-DA / Lecture 11 2013-02-26



Sample Semistructured Data

Ian Stark Inf1-DA / Lecture 11 2013-02-26



Sample Semistructured Data in XML

<Gazetteer>
<Country>

<Name>Slovenia</Name>
<Population>2,020,000</Population>
<Capital>Ljubljana</Capital>
<Region>

<Name>Gorenjska</Name>
<Feature type="Lake">Bohinj</Feature>
<Feature type="Mountain">Triglav</Feature>
<Feature type="Mountain">Spik</Feature>

</Region>
</Country>
<!−− data for other countries here −−>

</Gazetteer>

Ian Stark Inf1-DA / Lecture 11 2013-02-26



How to Extract Information from an XML Document?

Since an XML document is a text document, we could simply use
conventional text search to look for data.

However, this ignores all the document structure.

A more powerful approach is to use a dedicated language for forming
queries based on the tree structure of an XML document.

This is (yet another) domain-specific language.

With such a language we can, for example:
Perform database-style queries on data published as XML;
Extract annotated content from marked-up text documents;
Identify information captured in the tree structure itself.

Ian Stark Inf1-DA / Lecture 11 2013-02-26



XQuery and XPath

XQuery is a powerful declarative query language for extracting information
from XML documents.

As well as using XML documents for its source data, XQuery can also
produce XML documents as output, so we can view it as an XML
transformation language.

However, the XQuery language is complex, and we shall not investigate it
further here.

XPath is a sublanguage of XQuery, used for navigating XML documents
using path expressions.

XPath can be viewed as a rudimentary query language in its own right.

It is also an important component of other XML application languages
(XML Schema, XSLT, XForms, . . . ).

Ian Stark Inf1-DA / Lecture 11 2013-02-26



XPath Location Paths

An XPath location path (or path expression) identifies a set of nodes
within an XML document tree.

The location path describes a set of possible paths from the root of
the tree.

The set of nodes identified is all those reached as final destinations of
these paths.

When using a location path as a query on a document, this set of nodes is
returned as a list (without duplicates) sorted in document order — the
order the nodes appeared in the original XML document.

Ian Stark Inf1-DA / Lecture 11 2013-02-26



Family Tree Navigation

Document order Siblings of A

Ancestors of A Descendants of A

Ian Stark Inf1-DA / Lecture 11 2013-02-26



Examples of Location Paths

The next few slides illustrate a selection of location paths applied to the
gazetteer example. Each expression appears twice: once using full XPath
syntax, and once using a standard abbreviated syntax.

In each case, the nodes identified by the path are highlighted in red, and
for a query would be retrieved in document order.

Paths are built up step-by-step as the location path is read from left to
right, with a context node that travels over the tree according to the
components of the location path.

The slash / at the start of a location path indicates that the starting
position for the context node is the document root.

Ian Stark Inf1-DA / Lecture 11 2013-02-26



/child::Gazetteer
/Gazetteer



/child::Gazetteer/child::Country
/Gazetteer/Country



/child::Gazetteer/child::Country/child::Region
/Gazetteer/Country/Region



/descendant::Region/child::∗
//Region/∗



/descendant::Region/descendant::∗
//Region//∗



/descendant::Region/descendant::node()
//Region//node()



/descendant::Region/descendant::text()
//Region//text()



/descendant::Feature/attribute::type
//Feature/@type



Syntax for Location Paths

A location path is a sequence of location steps separated by a / character.

Each location step has the form

axis :: node-test predicate∗

The axis indicates which way the context node moves.

The node test selects nodes of an appropriate type.

The optional predicates supply further conditions that need to be
satisfied to continue with the path.

The examples so far used the child and descendant axes; node-tests
node(), text(), ∗, and individual names; and no predicates.

Ian Stark Inf1-DA / Lecture 11 2013-02-26



Some Axes

Different axes point in different directions from the current context node.

child: immediate children (attribute nodes don’t count)

descendant: any descendants (again, not attribute nodes)

parent: the unique parent (root has no parent)

attribute: all attribute nodes (context node must be an element node)

self : the context node itself

descendant−or−self: the context node together with its descendants.

Ian Stark Inf1-DA / Lecture 11 2013-02-26



Some Node Tests

Node tests select among all nodes along the current axis.

text(): nodes with character data.

node(): all nodes.

∗: all nodes of the “principal” node type for this axis: for the attribute
axis, this is attribute nodes; for any other axis, element nodes.

name: element nodes with the given name.
The names used for node tests in the earlier examples were:
Gazetteer, Country, Region, Feature and type.

Ian Stark Inf1-DA / Lecture 11 2013-02-26



XPath Abbreviations

Complete path expressions can become cumbersome, and XPath provides
a number of abbreviations for the basic operations.

The child:: axis is default and can be omitted

Syntax @ is an abbreviation for attribute::

Syntax // is an abbreviation for /descendant−or−self::node()/

Syntax .. is an abbreviation for parent::node()

Syntax . is an abbreviation for self::node()

Ian Stark Inf1-DA / Lecture 11 2013-02-26



UTF-8 Encoding

Ian Stark Inf1-DA / Lecture 11 2013-02-26



Syntax for Location Paths

A location path is a sequence of location steps separated by a / character.

Each location step has the form

axis :: node-test predicate∗

The axis indicates which way the context node moves.

The node test selects nodes of an appropriate type.

The optional predicates supply further conditions that need to be
satisfied to continue with the path.

The examples so far used the child and descendant axes; node-tests
node(), text(), ∗, and individual names; and no predicates.

Ian Stark Inf1-DA / Lecture 11 2013-02-26



Some Predicates

The node test in a location step may be followed by zero, one or several
predicates each given by an expression enclosed in square brackets.

[locationPath]
Selects only those nodes for which there exists a continuation path
matching locationPath.

[locationPath=value]
Selects nodes for which there is a continuation path matching
locationPath where the final node of the path is equal to value.

The full syntax of XPath predicate expressions includes arithmetic
operations and further path queries, and is beyond the scope of this course.

Ian Stark Inf1-DA / Lecture 11 2013-02-26



/descendant::Feature[attribute::type=’Mountain’]
//Feature[@type=’Mountain’]



/descendant::Feature[attribute::type=’Mountain’]/child::text()
//Feature[@type=’Mountain’]/text()



/descendant::Feature[attribute::type=’Mountain’]/parent::∗/child::Name/child::text()

//Feature[@type=’Mountain’]/../Name/text()



/descendant::∗[Feature/attribute::type=’Mountain’]/child::Name/child::text()

//∗[Feature/@type=’Mountain’]/Name/text()



XPath as Query Language

These last examples begin to show XPath as a query language, in this case
identifying in turn:

All features which are mountains;

The names of all mountains;

The names of all regions containing mountains.

When using XPath in practice, it’s often necessary to prefix a location
path with a pointer to the relevant XML document:

doc("gazetteer.xml")//Feature[@type=’Mountain’]/text()

Ian Stark Inf1-DA / Lecture 11 2013-02-26



Subtleties in Complex Queries

Name all countries containing a feature called “Salmon River”

We can select this from a gazetteer with the following XPath expression:

//Country[.//Feature/text()=’Salmon River’]/Name/text()

Note the use of ‘.’ to start a predicate path at the current context node.

However, this other — apparently very similar — expression won’t do:

//Country[//Feature/text()=’Salmon River’]/Name/text()

Without ‘.’ the predicate //Feature/text() goes back to the root node.

Ian Stark Inf1-DA / Lecture 11 2013-02-26



More on XPath

Full XPath has a host of other features, including: navigation based on
document order, position and size of context; name spaces; and a rich
expression language.

Further Reading
The official W3C specification: http://www.w3.org/TR/xpath

Wikipedia on XPath: https://en.wikipedia.org/wiki/Xpath

The (wildly optimistic) 10-minute XPath Tutorial: http://is.gd/xpath10

Homework
Tutorial sheet 5 is now online. This involves writing an XML DTD and
XPath queries, and running command-line tools which use them.

There’s quite a lot to do in this one, so start soon.

Ian Stark Inf1-DA / Lecture 11 2013-02-26

http://www.w3.org/TR/xpath
https://en.wikipedia.org/wiki/Xpath
http://is.gd/xpath10

