Part III — Unstructured Data

Data Retrieval:

III.1 Unstructured data and data retrieval

Statistical Analysis of Data:

III.2 Data scales and summary statistics

III.3 Hypothesis testing and correlation

The χ^2 test

While the correlation coefficient, introduced in the previous lecture, is a useful statistical test for correlation, it is applicable only to numerical data (both interval and ratio scales).

The χ^2 (*chi-squared*) *test* is a general tool for investigating correlations between *categorical data*.

We shall illustrate the χ^2 test with the following example.

Is there any correlation, in a class of students enrolled on a course, between submitting the coursework for the course and obtaining an A grade (mark of $\geq 70\%$) on the exam for the course?

The data we will use is the real-world data for those students who took the Informatics 1 – Data & Analysis exam in May 2011.

Part III: Unstructured Data

General approach

The investigation will conform to the usual pattern of a statistical test.

The *null hypothesis* is that there is no relationship between coursework submission and obtaining an A grade.

The χ^2 test will allow us to compute the probability p that the data we see might occur were the null hypothesis true.

Once again, if p is significantly low, we reject the null hypothesis, and we conclude that there is a relationship between coursework submission and obtaining an A grade.

To begin, we use the data to compile a *contingency table* of *frequency observations* O_{ij} .

Part III: Unstructured Data

Contingency table

$$O_{ij}$$
 sub \neg sub
A O_{11} O_{12}
 \neg A O_{21} O_{22}

 O_{11} is the number of students who submitted coursework and obtained an A grade.

 O_{12} is the number of students who did not submit coursework, but obtained an A grade.

 O_{21} is the number of students who submitted coursework, but did not obtain an A grade.

 O_{22} is the number of students who neither submitted coursework nor obtained an A grade.

Worked example

$$O_{ij}$$
sub \neg subA $O_{11} = 42$ $O_{12} = 7$ $\neg A$ $O_{21} = 49$ $O_{22} = 19$

1

 O_{11} is the number of students who submitted coursework and obtained an A grade.

 O_{12} is the number of students who did not submit coursework, but obtained an A grade.

 O_{21} is the number of students who submitted coursework, but did not obtain an A grade.

 O_{22} is the number of students who neither submitted coursework nor obtained an A grade.

Idea of χ^2 test

The observations O_{ij} are the actual data frequencies

We use these to calculate *expected frequencies* E_{ij} , i.e., the frequencies we would have expected to see were the null hypothesis true.

The χ^2 test is calculated by comparing the actual frequency to the expected frequency.

The larger the discrepancy between these two values, the more improbable it is that the data could have arisen were the null hypothesis true.

Thus a large discrepancy allows us to reject the null hypothesis and conclude that there is likely to be a correlation.

Marginals

To compute the expected frequencies, we first compute the *marginals* R_1, R_2, B_1, B_2 of the observation table.

Here

$$N = R_1 + R_2 = B_1 + B_2$$

Part III: Unstructured Data

Marginals explained

The marginals and N are very simple.

- B_1 is the number of students who submitted coursework.
- B_2 is the number of students who did not submit coursework.
- R_1 is the number of students who obtained an A.
- R_2 is the number of students who did not obtain an A.
- **N** is the total number of students who sat the exam.

Given these figures, if there were no relationship between submitting coursework and obtaining an A, we would expect the number of students doing both to be

$\frac{B_1R_1}{N}$

Expected frequencies

The *expected frequencies* E_{ij} are now calculated as follows.

$$E_{ij}$$
sub \neg subA $E_{11} = B_1 R_1 / N$ $E_{12} = B_2 R_1 / N$ $R_1 = E_{11} + E_{12}$ $\neg A$ $E_{21} = B_1 R_2 / N$ $E_{22} = B_2 R_2 / N$ $R_2 = E_{21} + E_{22}$ $B_1 = E_{11} + E_{21}$ $B_2 = E_{12} + E_{22}$ N

Notice that this table has the same marginals as the original.

The χ^2 value

We can now define the χ^2 value by:

$$\chi^2 \;=\; \sum_{i,j} rac{(O_{ij}-E_{ij})^2}{E_{ij}}$$

$$= \frac{(O_{11} - E_{11})^2}{E_{11}} + \frac{(O_{12} - E_{12})^2}{E_{12}} + \frac{(O_{21} - E_{21})^2}{E_{21}} + \frac{(O_{22} - E_{22})^2}{E_{22}}$$

N.B. It is always the case that:

$$(O_{11}-E_{11})^2 = (O_{12}-E_{12})^2 = (O_{21}-E_{21})^2 = (O_{22}-E_{22})^2$$

This fact is helpful in simplifying χ^2 calculations.

Mathematical Exercise. Why are these 4 values always equal?

Part III: Unstructured Data

Worked example (continued)

Marginals:

O_{ij}	sub	¬sub	
А	42	7	49
¬Α	49	19	68
	91	26	117

Expected values:

E_{ij}	sub	¬sub	
А	38.11	10.89	49
¬Α	52.89	15.11	68
	91	26	117

Part III: Unstructured Data

III: 79 / 91

Worked example (continued)

$$\chi^{2} = \frac{3.89^{2}}{38.11} + \frac{3.89^{2}}{10.89} + \frac{3.89^{2}}{52.89} + \frac{3.89^{2}}{15.11}$$
$$= \frac{15.13}{38.11} + \frac{15.13}{10.89} + \frac{15.13}{52.89} + \frac{15.13}{15.11}$$
$$= 0.40 + 1.40 + 0.29 + 1.00$$
$$= 3.09$$

Part III: Unstructured Data

Critical values for χ^2 test

For a χ^2 test based on a 2×2 contingency table, the critical values are:

p	0.1	0.05	0.01	0.001
χ^2	2.706	3.841	6.635	10.828

Interpretation of table: If the null hypothesis were true then:

- The probability of the χ^2 value exceeding 2.706 would be p = 0.1.
- The probability of the χ^2 value exceeding 3.841 would be p = 0.05.
- The probability of the χ^2 value exceeding 6.635 would be p = 0.01.
- The probability of the χ^2 value exceeding 10.828 would be p = 0.001.

Worked example (concluded)

In our worked example, we have $\chi^2 = 3.09 > 2.706$.

We can thus reject the null hypothesis with a weak confidence level (p < 0.1).

We conclude that there is some evidence of a correlation between submitting coursework and obtaining an A grade, but the significance is low (p < 0.1).

Since $\chi^2 = 3.09 < 3.841$ the significance cannot be improved to $p \le 0.05$.

χ^2 test — subtle points

In critical value tables for the χ^2 test, the entries are usually classified by *degrees of freedom*. For an $m \times n$ contingency table, there are $(m-1) \times (n-1)$ degrees of freedom. (This can be understood as follows. Given fixed marginals, once $(m-1) \times (n-1)$ entries in the table are completed, the remaining m + n - 1 entries are completely determined.)

The values in the table on slide III.80 are those for 1 degree of freedom, and are thus the correct values for a 2×2 table.

The χ^2 test for a 2×2 table is considered unreliable when N is small (e.g. less than 40) and at least one of the four expected values is less than 5. In such situations, a modification *Yates correction*, is sometimes applied. (The details are beyond the scope of this course.)

Part III: Unstructured Data

Application 2: finding collocations

Recall from Part II that a *collocation* is a sequence of words that occurs atypically often in language usage. Examples were: *strong tea*; *run amok*; *make up*; *bitter sweet*, etc.

Using the χ^2 test we can use corpus data to investigate whether a given n-gram is a collocation. For simplicity, we focus on bigrams. (N.B. All the examples above are bigrams.)

Given a bigram $w_1 w_2$, we use a corpus to investigate whether the words $w_1 w_2$ appear together atypically often.

Again we shall apply the χ^2 -test. So first we need to construct the relevant contingency table.

Contingency table for bigrams

 $f(w_1 w_2)$ is frequency of $w_1 w_2$ in the corpus.

 $f(\neg w_1 w_2)$ is number of bigram occurrences in corpus in which the second word is w_2 but the first word is not w_1 . (N.B. If the same bigram appears n times in the corpus then this counts as n different occurrences.) $f(w_1 \neg w_2)$ is number of bigram occurrences in corpus in which the first word is w_1 but the second word is not w_2 .

 $f(\neg w_1 \neg w_2)$ is number of bigram occurrences in corpus in which the first word is not w_1 and the second is not w_2 .

Part III: Unstructured Data

Worked example 2

Recall from note II.5 that the bigram *strong desire* occurred 10 times in the CQP Dickens corpus.

We shall investigate whether *strong desire* is a collocation.

The full contingency table is:

O_{ij}	strong	¬strong
desire	10	214
¬desire	655	3407085

Worked example 2 (continued)

Marginals:

O_{ij}	strong	¬strong	
desire	10	214	224
¬desire	655	3407085	3407740
	665	3407299	3407964

Expected values:

E_{ij}	strong	¬strong	
desire	0.044	223.956	224
¬desire	664.956	3407075.044	3407740
	665	3407299	3407964

Part III: Unstructured Data

Worked example 2 (continued)

$$\chi^{2} = \frac{9.956^{2}}{0.044} + \frac{9.956^{2}}{223.956} + \frac{9.956^{2}}{664.956} + \frac{9.956^{2}}{3407075.044}$$
$$= \frac{99.122}{0.044} + \frac{99.122}{223.956} + \frac{99.122}{664.956} + \frac{99.122}{3407075.044}$$
$$= 2252.773 + 0.443 + 0.149 + 0.000$$

= 2253.365

Part III: Unstructured Data

Worked example 2 (continued)

In our worked example, we have $\chi^2 = 2253.365 > 10.828$,

In this case, we can reject the null hypothesis with very high confidence (p < 0.001).

In fact since $\chi^2 = 2253.365 \gg 10.828$ we have confidence $p \ll 0.001$

However, all this tells us is that there is a strong correlation between occurrences of *strong* and occurrences of *desire*.

Due to the non-random nature of language, one would expect a strong correlation for *almost any* bigram occurring in a corpus.

Thus the critical values table is not informative for this investigation.

Worked example 2 (concluded)

So how can we tell if *strong desire* occurs atypically often?

One way is to use χ^2 values to *rank* bigrams occurring in a given corpus. A higher χ^2 means that the bigram is more significant.

If a bigram has an *atypically high* χ^2 value for the corpus, then this provides evidence in support of it being a collocation.

We could thus confirm that *strong desire* is a collocation by calculating χ^2 values for many other adjective-noun combinations, and finding that a value of **2253.365** is atypically high.

We do not do this, because the main point, that χ^2 values can be used to investigate collocations, has been made.

Part III: Unstructured Data

Berkeley Sex Bias

	Accepted	Rejected	Applied	Success	
Male	1122	1005	2127	53%	$\chi^2 - 11.66$
Female	511	590	1101	46%	$\chi = 11.00$
Total	1633	1595	3228	51%	

Simpson's Paradox

FG S	Accepted	Rejected	Applied	Success	
Male	864	521	1385	62%	$\chi^2 - 15.77$
Female	106	27	133	80%	$\chi = 15.77$
Total	970	548	1518	64%	

FG A	Accepted	Rejected	Applied	Success	
Male	258	484	742	35%	$x^2 - 8.84$
Female	405	563	968	42%	$\chi = 0.04$
Total	663	1047	1710	39%	

Part III: Unstructured Data