
Inf1-DA 2011–2012 I: 75 / 117

Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple-relational calculus

I.5 The SQL query language

Related reading: Chapter 4 of [DMS], §§ 4.3

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 76 / 117

Motivation

Tuple-relational calculus is another way of writing queries for relational
data.

Its power lies in the fact that it is entirely declarative.

That is, we specify the properties of the data we are interested in retrieving,
but we do not describe any particular method by which the data can be
retrieved.

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 77 / 117

Basic format

Queries in the relational calculus are based on tuple variables.

Each tuple variable has an associated schema (i.e. a type). The variable
ranges over all possible tuples of values matching the schema declaration.

A query in the calculus has the general form

{T | p(T )}
where T is a tuple variable and p(T ) is some formula of first-order
predicate logic in which the tuple variable T occurs free.

The result of this query is the set of all possible tuples t (consistent with the
schema of T ) for which the formula p(T ) evaluates to true when T = t.

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 78 / 117

Simple example

Find all students at least 19 years old

{S | S ∈ Students ∧ S.age > 18}
In detail:

• S is a tuple variable

• S can take any value in the Students table

• Evaluate S.age > 18 on each such tuple

• That tuple should appear in the result if and only if the predicate
evaluates to true

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 79 / 117

Formal syntax of atomic formulae

General formulae are built out of atomic formulae.

An atomic formula is one of the following:

• R ∈ Rel

• R.a op S.b

• R.a op constant

• constant op S.b

where: R,S are tuple variables, Rel is a relation name, a, b are attributes of
R,S respectively, and op is any operator in the set {>,<,=, 6=,≥,≤}

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 80 / 117

Formal syntax of (composite) formulae

A formula is (recursively defined) to be one of the following:

• any atomic formula

• ¬p, p ∧ q, p ∨ q, p⇒ q

• ∃R. p(R), ∀R. p(R)

where p(R) denotes a formula in which the variableR appears free.

N.B. Recall that Informatics 1: Computation & Logic introduced first-order
logic in more detail. For notation, we follow Ramakrishnan & Gehrke
“Database Management Systems” in using ¬ for not; ∧ for and; ∨ for or;
and⇒ for→. The main difference from standard first-order logic is the
use of variables ranging over tuples (rather than individuals), and the
correspondingly specialized forms of atomic formulae.

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 81 / 117

A subtle point

In ordinary first-order logic we can, in principle, form quantifications
∃R. p and ∀R. p even whenR does not occur in p. (In practice, such
quantifications are normally useless since they are trivial.)

In tuple-relational calculus we only allow ∃R. p and ∀R. p whenR
occurs free in p. This is no great restriction, and it saves us explicitly
declaring the schema ofR:

• Under this rule, every tuple variableR that appears in a formula is
forced to appear in at least one atomic subformula. The atomic
formulae in whichR appears then determine the schema ofR. The
schema is taken to be the smallest one containing all the fields that are
declared as attributes ofR within the formula itself.

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 82 / 117

Illustrative example

An example showing how to compute the minimal schema for a query:

{P | ∃S ∈ Students (S.age > 20 ∧ P.name = S.name

∧ P.age = S.age)}
• The schema of S is that of the Students table. This is declared by

the atomic formula S ∈ Students.

• The schema of P has just two fields name and age, with the same
types as the corresponding fields in Students.

• The query returns a table with two fields name and age containing the
names and ages of all students aged 21 or over.

Note the use of ∃S ∈ Students (p) for ∃S (S ∈ Students ∧ p).
We make free use of such (standard) abbreviations.

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 83 / 117

Further examples (1)

Query: Find the names of students who are taking Informatics 1

Relational algebra:

πStudents.name(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code (σname=‘Informatics 1’(Courses))))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

(C.name = ‘Informatics 1’ ∧ C.code = T.code ∧
S.mn = T.mn ∧ P.name = S.name)}

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 84 / 117

Tree representation of algebraic expression (abstract syntax)

For the previous query, changing the bracketing does not change the query.

πStudents.name((Students ./Students.mn=Takes.mn Takes)

./Takes.code=Courses.code (σname=‘Informatics 1’(Courses)) )

A tree representation can help one visualise a relational algebra query.

Students Takes

⋈Students.mn = Takes.mn

⋈Takes.code = Courses.code

πStudents.name

σname=’Informatics 1’

Courses

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 85 / 117

Further examples (2)

Query: Find the names of all courses taken by (everyone called) Joe

Relational algebra:

πCourses.name((σname=’Joe’(Students)) ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code Courses))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

(S.name = ‘Joe’ ∧ S.mn = T.mn ∧
C.code = T.code ∧ P.name = C.name)}

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 86 / 117

Further examples (3)

Query: Find the names of all students who are taking Informatics 1 or
Geology 1

Relational algebra:

πStudents.name(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Informatics 1’∨name=‘Geology 1’(Courses))))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

((C.name = ‘Informatics 1’ ∨ C.name = ’Geology 1’) ∧
C.code = T.code ∧ S.mn = T.mn ∧ P.name = S.name)}

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 87 / 117

Further examples (4)

Query: Find the names of students who are taking both Informatics 1 and
Geology 1

Relational algebra:

πStudents.name(

(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Informatics 1’(Courses))))

∩
(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Geology 1’(Courses)))) )

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 88 / 117

Further examples (4 continued)

Query: Find the names of students who are taking both Informatics 1 and
Geology 1

Tuple-relational calculus:

{P | ∃S ∈ Students (P.name = S.name ∧
∀C ∈ Courses

((C.name = ‘Informatics 1’ ∨ C.name = ‘Geology 1’)⇒
(∃T ∈ Takes (T.mn = S.mn ∧ T.code = C.code)))) }

Exercise. What does this query return in the case that there is no course in
Courses called ‘Geology 1’? Find a way of rewriting the query so that it
only returns an answer if both ‘Informatics 1’ and ‘Geology 1’ courses exist.

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 89 / 117

Further examples (5)

Query: Find the names of all students who are taking all courses

Tuple-relational calculus:

{P | ∃S ∈ Students (P.name = S.name ∧
∀C ∈ Courses

(∃T ∈ Takes (T.mn = S.mn ∧ T.code = C.code))) }

Exercise. Try to write this query in relational algebra.

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 90 / 117

Relational algebra and tuple-relational calculus compared

Relational algebra (RA) and tuple-relational calculus (TRC) have the same
expressive power

That is, if a query can be expressed in RA, then it can be expressed in TRC,
and vice-versa

Why is it useful to have both approaches?

Part I: Structured Data I.4: Tuple-relational calculus



Inf1-DA 2011–2012 I: 91 / 117

Declarative versus procedural

Recall that TRC is declarative and RA is procedural.

This suggests the following methodology.

• Specify the data that needs to be retrieved using relational calculus.

• Translate this to an equivalent query in relational algebra.

• Rearrange that to obtain an efficient method to retrieve the data.

This approach underpins query optimisation in relational databases.

In practice, queries are written in SQL rather than TRC but these are then
translated into algebraic operations.

The key observation is that succinctly and correctly specifying the queries is
best done in one language, while efficiently executing those queries may
require translating to a different one.

Part I: Structured Data I.4: Tuple-relational calculus


