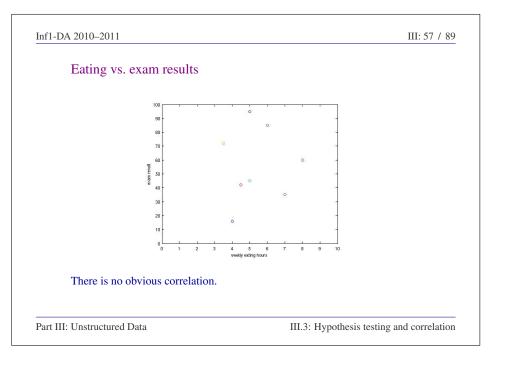
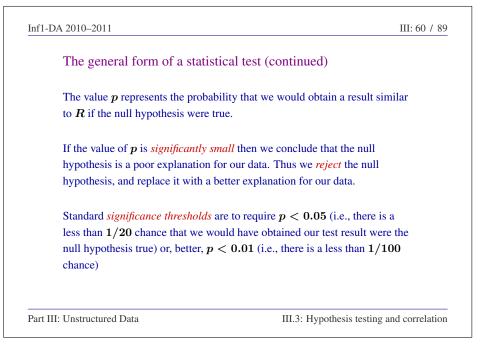

nf1-DA 2010–2011	III: 51 / 89
Part III — Unstructured Data	
Data Retrieval:	
III.1 Unstructured data and data retrieval	
Statistical Analysis of Data:	
III.2 Data scales and summary statistics	
III.3 Hypothesis testing and correlation	
III.4 χ^2 and collocations	
art III: Unstructured Data	III.3: Hypothesis testing and correlation


Severa	al variables										
Often, o	one wants to	relate	data i	n seve	ral va	riables	(i.e.,	multi	-dimens	ional	
data).											
For exa	mple, the tab	le bel	ow ta	bulates	s, for e	eight s	tudent	s (A–	H), their	r	
weekly	time (in hou	rs) spe	ent: st	udying	g for E	Data &	Analy	ysis, c	lrinking	and	
eating.	This is juxta	posed	with	their D	oata &	Analy	sis ex	am re	sults.		
		А	В	С	D	Е	F	G	Н		
	Study	0.5	1	1.4	1.2	2.2	2.4	3	3.5		
	Drinking	25	20	22	10	14	5	2	4		
	Eating	4	7	4.5	5	8	3.5	6	5		
	Exam	16	35	42	45	60	72	85	95		
Thus	ve have four	variab	les: st	tudy, d	rinkin	g, eati	ng and	1 exar	n.		
Thus, v											



nf1-DA 2010–2011	III: 58 / 89
Statistical hypothesis testir	g
The last three slides use data vis hypotheses about data.	ualisation as a tool for postulating
hypothesis may be true; a percei	teses for other reasons, e.g.: intuition that a ved analogy with another situation in which be valid; existence of a theoretical model
Statistics provides the tools need with scientific rigour: <i>statistical</i>	led to corroborate or refute such hypotheses <i>tests</i> .
art III: Unstructured Data	III.3: Hypothesis testing and correlation

inf1-DA 2010–2011	III: 59 / 8
The general form of a statistical test	
One applies an appropriately chosen statistical test to the dather the result R .	ata and calculates
Statistical tests are usually based on a <i>null hypothesis</i> that the out of the ordinary about the data.	here is nothing
The result R of the test has an associated <i>probability value</i>	<i>p</i> .
The value p represents the probability that we would obtain to R if the null hypothesis were true.	n a result similar
N.B., p is <i>not</i> the probability that the null hypothesis is true quantifiable value.	e. This is not a
Part III: Unstructured Data III.3: Hypoth	nesis testing and correlation

Inf1-DA 2010-2011

III: 61 / 89

Correlation coefficient

The *correlation coefficient* is a statistical measure of how closely the data values x_1, \ldots, x_N are correlated with y_1, \ldots, y_N .

Let μ_x and σ_x be the mean and standard deviation of the x values. Let μ_y and σ_y be the mean and standard deviation of the y values.

The correlation coefficient $\rho_{x,y}$ is defined by:

$$\rho_{x,y} = \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N \sigma_x \sigma_y}$$

If $\rho_{x,y}$ is positive this suggests x, y are *positively correlated*. If $\rho_{x,y}$ is negative this suggests x, y are *negatively correlated*. If $\rho_{x,y}$ is close to **0** this suggests there is no correlation.

Part III: Unstructured Data

III.3: Hypothesis testing and correlation

Inf1-DA 2010–2011	III: 62 / 89
Correlation coefficient as a s	statistical test
	wo variables x, y (e.g., exam result and correlation and a direction for the itive) between the variables.
The null hypothesis is that there is	s no correlation.
We calculate the correlation coeff	icient $\rho_{x,y}$.
	<i>critical values table</i> for the correlation and in statistics books (and on the Web). bility value <i>p</i> .
•	e have significant grounds for rejecting the better explanation is that there <i>is</i> a
Part III: Unstructured Data	III.3: Hypothesis testing and correlation

Inf1-DA 2010	-2011					III: 63 / 89
Criti	ical valu	es table f	or the corre	elation coef	fficient	
The t	able has 1	rows for N	values and co	olumns for p	values.	
	N	p = 0.1	p = 0.05	p = 0.01	p = 0.001]
	7	0.669	0.754	0.875	0.951	
	8	0.621	0.707	0.834	0.925	
	9	0.582	0.666	0.798	0.898]
p <the number of the simil $p <$	0.01 of c ull hypoth arly, for 2 0.001 of	beccurring (the second	hat is less that les	n a $1/100$ cl $ > 0.925$ h	> 0.834 has p hance of occur as probability 0 chance of occ	ring) if
Part III: Unstr	uctured Da	nta		III.3	: Hypothesis tes	ting and correlation

nf1-DA 2010–2011	III: 64 / 89
Studying vs. exam results	
We use the data from III: 52 (see also	III: 55), with the study values for
x_1,\ldots,x_N , and the exam values for	y_1,\ldots,y_N , where $N=8$.
The relevant statistics are:	
$\mu_x~=~1.9$	$\sigma_x~=~0.981$
$\mu_y~=~56.25$	$\sigma_y~=~24.979$
	$ ho_{x,y}~=~0.985$
Our value of 0.985 is (much) higher reject the null hypothesis with very hi conclude that there is a correlation.	than the critical value 0.925 . Thus we gh confidence ($p < 0.001$) and
reject the null hypothesis with very hi	gh confidence ($p < 0.001$) and
reject the null hypothesis with very hi conclude that there is a correlation.	gh confidence ($p < 0.001$) and is positive not negative.
reject the null hypothesis with very hi conclude that there is a correlation. It is a <i>positive correlation</i> since $\rho_{x,y}$	gh confidence ($p < 0.001$) and

Drinking vs. exam results We now use the drinking values from III: 52 (see also III: 56) as the values for x_1, \ldots, x_8 . (The y values are unchanged.) The new statistics are: $\mu_x = 12.75$ $\sigma_x = 8.288$ $\rho_{x,y} = -0.914$ Since |-0.914| = 0.914 > 0.834, we can reject the null hypothesis with confidence (p < 0.01). This result is still significant though less so than the previous. This time, the value -0.914 of $\rho_{x,y}$ is negative so we conclude that there is a *negative correlation* Part III: Unstructured Data III.3: Hypothesis testing and correlation

Inf1-DA 2010-2011

Estimating correlation from a sample

As on slides III: 47–48, assume samples x_1, \ldots, x_n and y_1, \ldots, y_n from a population of size N where $n \ll N$.

Let m_x and m_y be the estimates of the means of the x and y values (V: 47) Let s_x and s_y be the estimates of the standard deviations (V: 48)

The best estimate $r_{x,y}$ of the correlation coefficient is given by:

$$r_{x,y} = rac{\sum_{i=1}^{n} (x_i - m_x)(y_i - m_y)}{(n-1)s_x s_y}$$

The correlation coefficient is sometimes called *Pearson's correlation coefficient*, particularly when it is estimated from a sample using the formula above.

Part III: Unstructured Data

III.3: Hypothesis testing and correlation

III: 66 / 89

nf1-DA 2010–2011	III: 67 / 89
Correlation coefficient — sub	tleties
	s how close a scatter plot of x, y values
relationship between x, y is linear.	high correlation does not mean that the
closely approximated by a linear rel	•
Critical value tables for the correlati	on coefficient are often given with rows
indexed by degrees of freedom rathe	r than by N . For the correlation
coefficient, the number of degrees of	<i>f freedom</i> is $N - 2$, so it is easy to
translate such a table into the form g	given here. (The notion of degree of
freedom, in the case of correlation,	is too advanced a concept for D&A.)
Also, critical value tables often have	e two classifications: one for one-tailed
tests and one for two-tailed tests. He	ere, we are applying a <i>two-tailed test</i> :
we consider both positive and negat	ive values as significant. In a <i>one-tailed</i>
test, we would be interested in just of	one of these possibilities.
Part III: Unstructured Data	III.3: Hypothesis testing and correlation