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Part III — Unstructured Data

Data Retrieval:

III.1 Unstructured data and data retrieval

Statistical Analysis of Data:

III.2 Data scales and summary statistics

III.3 Hypothesis testing and correlation

III.4 χ2 and collocations
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Several variables

Often, one wants to relate data in several variables (i.e., multi-dimensional
data).

For example, the table below tabulates, for eight students (A–H), their
weekly time (in hours) spent: studying for Data & Analysis, drinking and
eating. This is juxtaposed with their Data & Analysis exam results.

A B C D E F G H

Study 0.5 1 1.4 1.2 2.2 2.4 3 3.5

Drinking 25 20 22 10 14 5 2 4

Eating 4 7 4.5 5 8 3.5 6 5

Exam 16 35 42 45 60 72 85 95

Thus, we have four variables: study, drinking, eating and exam.
(This is four-dimensional data.)
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Correlation

We can ask if there is any relationship between the values taken by two
variables.

If there is no relationship, then the variables are said to be independent.
If there is a relationship, then the variables are said to be correlated.

Caution: A correlation does not imply a causal relationship between one
variable and another. For example, there is a positive correlation between
incidences of lung cancer and time spent watching television, but neither
causes the other.

However, in cases in which there is a causal relationship between two
variables, then there often will be an associated correlation between the
variables.
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Visualising correlations

One way of discovering correlations is to visualise the data.

A simple visual guide is to draw a scatter plot using one variable for the
x-axis and one for the y-axis.

Example: In the example data on Slide III: 52, is there a correlation
between study hours and exam results? What about between drinking hours
and exam results? What about eating and exam results?
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Studying vs. exam results

This looks like a positive correlation.
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Drinking vs. exam results

This looks like a negative correlation.
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Eating vs. exam results

There is no obvious correlation.
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Statistical hypothesis testing

The last three slides use data visualisation as a tool for postulating
hypotheses about data.

One might also postulate hypotheses for other reasons, e.g.: intuition that a
hypothesis may be true; a perceived analogy with another situation in which
a similar hypothesis is known to be valid; existence of a theoretical model
that makes a prediction; etc.

Statistics provides the tools needed to corroborate or refute such hypotheses
with scientific rigour: statistical tests.
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The general form of a statistical test

One applies an appropriately chosen statistical test to the data and calculates
the resultR.

Statistical tests are usually based on a null hypothesis that there is nothing
out of the ordinary about the data.

The resultR of the test has an associated probability value p.

The value p represents the probability that we would obtain a result similar
toR if the null hypothesis were true.

N.B., p is not the probability that the null hypothesis is true. This is not a
quantifiable value.
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The general form of a statistical test (continued)

The value p represents the probability that we would obtain a result similar
toR if the null hypothesis were true.

If the value of p is significantly small then we conclude that the null
hypothesis is a poor explanation for our data. Thus we reject the null
hypothesis, and replace it with a better explanation for our data.

Standard significance thresholds are to require p < 0.05 (i.e., there is a
less than 1/20 chance that we would have obtained our test result were the
null hypothesis true) or, better, p < 0.01 (i.e., there is a less than 1/100
chance)
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Correlation coefficient

The correlation coefficient is a statistical measure of how closely the data
values x1, . . . , xN are correlated with y1, . . . , yN .

Let µx and σx be the mean and standard deviation of the x values.
Let µy and σy be the mean and standard deviation of the y values.

The correlation coefficient ρx,y is defined by:

ρx,y =

∑N
i=1(xi − µx)(yi − µy)

Nσxσy

If ρx,y is positive this suggests x, y are positively correlated.
If ρx,y is negative this suggests x, y are negatively correlated.
If ρx,y is close to 0 this suggests there is no correlation.
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Correlation coefficient as a statistical test

In a test for correlation between two variables x, y (e.g., exam result and
study hours), we are looking for a correlation and a direction for the
correlation (either negative or positive) between the variables.

The null hypothesis is that there is no correlation.

We calculate the correlation coefficient ρx,y .

We then look up significance in a critical values table for the correlation
coefficient. Such tables can be found in statistics books (and on the Web).
This gives us the associated probability value p.

The value of p tells us whether we have significant grounds for rejecting the
null hypothesis, in which case our better explanation is that there is a
correlation.
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Critical values table for the correlation coefficient

The table has rows forN values and columns for p values.

N p = 0.1 p = 0.05 p = 0.01 p = 0.001

7 0.669 0.754 0.875 0.951

8 0.621 0.707 0.834 0.925

9 0.582 0.666 0.798 0.898

The table shows that forN = 8 a value of |ρx,y| > 0.834 has probability
p < 0.01 of occurring (that is less than a 1/100 chance of occurring) if
the null hypothesis is true.

Similarly, forN = 8 a value of |ρx,y| > 0.925 has probability
p < 0.001 of occurring (that is less than a 1/1000 chance of occurring) if
the null hypothesis is true.
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Studying vs. exam results

We use the data from III: 52 (see also III: 55), with the study values for
x1, . . . , xN , and the exam values for y1, . . . , yN , whereN = 8.

The relevant statistics are:

µx = 1.9 σx = 0.981

µy = 56.25 σy = 24.979

ρx,y = 0.985

Our value of 0.985 is (much) higher than the critical value 0.925. Thus we
reject the null hypothesis with very high confidence (p < 0.001) and
conclude that there is a correlation.

It is a positive correlation since ρx,y is positive not negative.
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Drinking vs. exam results

We now use the drinking values from III: 52 (see also III: 56) as the values
for x1, . . . , x8. (The y values are unchanged.)

The new statistics are:

µx = 12.75 σx = 8.288 ρx,y = −0.914

Since | − 0.914| = 0.914 > 0.834, we can reject the null hypothesis
with confidence (p < 0.01). This result is still significant though less so
than the previous.

This time, the value−0.914 of ρx,y is negative so we conclude that there
is a negative correlation
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Estimating correlation from a sample

As on slides III: 47–48, assume samples x1, . . . , xn and y1, . . . , yn from
a population of sizeN where n << N .

Letmx andmy be the estimates of the means of the x and y values (V: 47)
Let sx and sy be the estimates of the standard deviations (V: 48)

The best estimate rx,y of the correlation coefficient is given by:

rx,y =

∑n
i=1(xi −mx)(yi −my)

(n− 1)sxsy

The correlation coefficient is sometimes called Pearson’s correlation
coefficient, particularly when it is estimated from a sample using the
formula above.
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Correlation coefficient — subtleties

The correlation coefficient measures how close a scatter plot of x, y values
is to a straight line. Nonetheless, a high correlation does not mean that the
relationship between x, y is linear. It just means it can be reasonably
closely approximated by a linear relationship.

Critical value tables for the correlation coefficient are often given with rows
indexed by degrees of freedom rather than byN . For the correlation
coefficient, the number of degrees of freedom isN − 2, so it is easy to
translate such a table into the form given here. (The notion of degree of
freedom, in the case of correlation, is too advanced a concept for D&A.)

Also, critical value tables often have two classifications: one for one-tailed
tests and one for two-tailed tests. Here, we are applying a two-tailed test:
we consider both positive and negative values as significant. In a one-tailed
test, we would be interested in just one of these possibilities.
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