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Query type

We shall only consider simple queries of the form:

• Find documents containing word1, word2, . . . , wordn

More specific tasks are:

• Find documents containing all the words word1, word2 . . . wordn;

• or find documents containing as many of the words word1, word2
. . . wordn as possible.

Going beyond these forms, queries can also be much more complex: they
can be combined using boolean operations, look for whole phrases,
substrings of words, look for matches of regular expressions, etc.
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A retrieval model

If we look for all documents containing all words of the query — or all
documents that contain some of the words of the query — then this may
well result in a large number of documents, of widely varying relevance.

In this situation, it can help if IR systems can rank documents according to
likely relevance.

There are many such ranking methods.

We focus on one, which uses the vector space model.

This model is the basis of many IR applications; it originated in the work of
Gerard Salter and others in the 1970’s, and is still actively developed.

In this course, we shall only use it in one particularly simple way.
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The vector space model

Core ideas:

• Treat documents as points in a high-dimensional vector space, based on
words in the document collection.

• The query is treated in the same way.

• The documents are ranked according to document-query similarity.

N.B. You do not need a detailed understanding of vector spaces to follow
the working of the model.
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The vector associated to a document

Suppose Term1, Term2, . . . , Termn are all the different words occurring in
the entire collection of documents Doc1, Doc2, . . . , DocK .

Each document, Doci, is assigned an n-valued vector:

(mi1,mi2, . . . ,min)

wheremij is the number of times word Termj occurs in document Doci.

Similarly, the query is assigned an n-valued vector by considering it as a
document itself.
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Example

Consider the document

Sun, sun, sun, here it comes

and suppose the only words in the document collection are: comes, here, it,
sun.

The vector for the document is (1, 1, 1, 3)

comes here it sun

1 1 1 3

Similarly, the vector for the query sun comes is (1, 0, 0, 1)
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Document matrix

The frequency information for words in the document collection is normally
precompiled in a document matrix.

This has:

• Columns represent the words appearing the document collection

• Rows represent each document in the collection.

• each entry in the matrix represents the frequency of the word in the
document.
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Document matrix — example

Term1 Term2 Term3 ... Termn

Doc1 14 6 1 ... 0

Doc2 0 1 3 ... 1

Doc3 0 1 0 ... 2

... ... ... ... ... ...

DocK 4 7 0 ... 5

N.B. Each row gives the vector for the associated document.
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Vector similarity

We want to rank documents according to relevance to the query.

We implement this by defining a measure of similarity between vectors.

The idea is that the most relevant documents are those whose vectors are
most similar to the query vector.

Many different similarity measures are used. A simple one that is
conceptually appealing and enjoys some good properties is the cosine of the
angle between two vectors.
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Cosines (from school trigonometry)

Recall that the cosine of an angle θ is:

adjacent

hypotenuse

in a right-angled triangle with angle θ.

Crucial properties:

cos(0) = 1 cos(90◦) = 0 cos(180◦) = −1

More generally, two n-dimensional vectors will have cosine: 1 if they are
identical, 0 if they are orthogonal, and−1 if they point in opposite
directions.

The value cos(x) always lies in the range from−1 to 1.
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Vector cosines

Suppose ~x and ~y are n-value vectors:

~x = (x1, . . . , xn) ~y = (y1, . . . , yn)

Their cosine (that is, the cosine of the angle between them) is calculated by:

cos(~x, ~y) =
~x · ~y
|~x||~y| =

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

Here ~x · ~y is the scalar product of vectors ~x and ~y, while |~x| is the length
(or norm) of the vector ~x.
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Vector cosines — example

Continuing the example from slide 11.18, suppose:

~x = (1, 1, 1, 3) ~y = (1, 0, 0, 1)

Then:

~x · ~y = 1 + 0 + 0 + 3 = 4

|~x| = √1 + 1 + 1 + 9 =
√
12

|~y| = √1 + 0 + 0 + 1 =
√
2

So

cos(~x, ~y) =
4√

12×√2
=

2√
6

= 0.82

to two significant figures.
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Ranking documents

Suppose ~y is the query vector, and ~x1, . . . , ~xK are theK document
vectors.

We calculate theK values:

cos( ~x1, ~y), . . . , cos( ~xK , ~y)

Sorting these, the documents with the highest cosine values when compared
to the query ~y are the best match, and those with the lowest cosine values
are counted as least suitable.

N.B. On this slide ~x1, . . . , ~xK areK (potentially) different vectors, each
with n values.
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Discussion of cosine measure

The cosine similarity measure, as discussed here, is very crude.

• It only takes word frequency into account, not position or ordering

• It takes all words in the document collection into account (whether very
common “stop” words which are useless for IR, or very uncommon
words unrelated to the search)

• All words in the document collection are weighted equally

• It ignores document size (just the angles between vectors not their
magnitude are considered)

Nevertheless, the cosine method can be refined in various ways to avoid
these problems. (This is beyond the scope of this course.)
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Other issues

• Precision and recall, as defined, only evaluate the set of documents
returned, they do not take ranking into account. Other more complex
evaluation measures can be introduced to deal with ranking (e.g.,
precision at a cutoff ).

• We have not considered the efficient implementation of the search for
documents matching a query. This is often addressed using a
purpose-built index such as an inverted index which indexes all
documents using the words in the document collection as keys.

• Often useful ranking methods make use of information extraneous to
the document itself. E.g., Google’s pagerank method evaluates
documents according to their degree of connectivity with the rest of the
web (e.g., number of links to page from other pages).

These are important issues, but are beyond the scope of this course.
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Part III — Unstructured Data

Data Retrieval:

III.1 Unstructured data and data retrieval

Statistical Analysis of Data:

III.2 Data scales and summary statistics

III.3 Hypothesis testing and correlation

III.4 χ2 and collocations
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Analysis of data

There are many reasons to analyse data.

Two common goals of analysis:

• Discover implicit structure in the data.

E.g., find patterns in empirical data (such as experimental data).

• Confirm or refute a hypothesis about the data.

E.g., confirm or refute an experimental hypothesis.

Statistics provides a powerful and ubiquitous toolkit for performing such
analyses.
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Data scales

The type of analysis performed (obviously) depends on:

• The reason for wishing to carry out the analysis.

• The type of data to hand.

For example, the data may be quantitative (i.e., numerical), or it may be
qualitative (i.e., descriptive).

One important aspect of the kind of data is the form of data scale it belongs
to:

• Categorical (also called nominal) and Ordinal scales (for qualitative
data).

• Interval and ratio scales (for quantitative data).

This affects the ways in which we can manipulate data.
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Categorical scales

Data belongs to a categorical scale if each datum (i.e., data item ) is
classified as belonging to one of a fixed number categories.

Example: The British Government (presumably) classifies Visa
applications according to the nationality of the applicant. This classification
is a categorical scale: the categories are the different possible nationalities.

Example: Insurance companies classify some insurance applications (e.g.,
home, possessions, car) according to the postcode of the applicant (since
different postcodes have different risk assessments).

Categorical scales are sometimes called nominal scales, especially in cases
in which the value of a datum is a name.
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Ordinal scales

Data belongs to an ordinal scale if it has an associated ordering but
arithmetic transformations on the data are not meaningful.

Example: The Beaufort wind force scale classifies wind speeds on a scale
from 0 (calm) to 12 (hurricane). This has an obvious associated ordering,
but it does not make sense to perform arithmetic operations on this scale.
E.g., it does not make much sense to say that scale 6 (strong breeze) is the
average of calm and hurricane force.

Example: In many institutions, exam marks are recorded as grades (e.g.,
A,B,. . . , G) rather than as marks. Again the ordering is clear, but one does
not perform arithmetic operations on the scale.
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Interval scales

An interval scale is a numerical scale (usually with real number values) in
which we are interested in relative value rather than absolute value.

Example: Points in time are given relative to an arbitrarily chosen zero
point. We can make sense of comparisons such as: moment x is 2009 years
later than moment y. But it does not make sense to say: moment x is twice
as large as moment z.

Mathematically, interval scales support the operations of subtraction
(returning a real number for this) and weighted average.

Interval scales do not support the operations of addition and multiplication.
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Ratio scales

A ratio scale is a numerical scale (again usually with real number values) in
which there is a notion of absolute value.

Example: Most physical quantities such as mass, energy and length are
measured on ratio scales. So is temperature if measured in kelvins (i.e.
relative to absolute zero).

Like interval scales, ratio scales support the operations of subtraction and
weighted average. They also support the operations of addition and of
multiplication by a real number.

Question for physics students: Is time a ratio scale if one uses the Big Bang
as its zero point?
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