if1-DA 2010–2011	II: 97 / 119
Part II — Semistructured Data	
XML:	
II.1 Semistructured data, XPath and XML	
II.2 Structuring XML	
II.3 Navigating XML using XPath	
Corpora:	
II.4 Introduction to corpora	
II.5 Querying a corpus	
rt II: Semistructured Data	II.5: Querying a corpus

Inf1-DA 2010–2011	II: 98 / 119
Applications of corpora	
Answering empirical questions in linguistics and cog	nitive science:
• corpora can be analyzed using statistical tools;	
 hypotheses about language processing and language tested; 	age acquisition can be
• new facts about language structure can be discov	ered.
Engineering natural-language systems in AI and com	puter science:
• corpora represent the data that these language proto handle;	ocessing systems have
• algorithms can find and extract regularities from	corpus data;
• text-based or speech-based computer application automatically from corpus data.	s can learn
Part II: Semistructured Data	II.5: Querying a corpus

 Inf1-DA 2010-2011
 II: 99 / 119

 Extracting data from corpora
 To do something useful with corpus data and its annotation, we need to be able to query the corpus to extract the data and information we want.

 This lecture introduces:
 • The basic notion of a *concordance* in a corpus.

 • Statistics of *frequency* and *relative frequency*, useful for linguistic questions and natural language processing.

 • Unigrams, bigrams and n-grams.

 • The linguistic notion of a *collocation*.

Inf1-DA 2010–2011	II: 100 / 119
Concordances	
<i>Concordance:</i> all occurrences of a given word, displayed in context.	
More generally, one looks for all occurrences of matches for some que expression.	ery
• generated by concordance programs based on a user keyword;	
• keyword (search query) can specify word, annotation (POS, etc.) more complex information (e.g., using regular expressions);	or
• output displayed as keyword in context: matched keyword in the middle of the line, with a fixed amount of context to left and right	
Part II: Semistructured Data II.5: Qu	erying a corpus

Inf1-DA 2010–2011 II: 101 / 119
Example
A concordance for all forms of the word " <i>remember</i> " in a corpus of the complete works of Dickens.
's cellar . Scrooge then <remembered> to have heard that ghost</remembered>
, for your own sake , you <remember> what has passed between</remember>
e-quarters more , when he <remembered> , on a sudden , that the</remembered>
corroborated everything , <remembered> everything , enjoyed eve</remembered>
urned from them , that he <remembered> the Ghost , and became c</remembered>
ht be pleasant to them to <remember> upon Christmas Day , who</remember>
its festivities ; and had <remembered> those he cared for at a</remembered>
wn that they delighted to <remember> him . It was a great sur</remember>
ke ceased to vibrate , he <remembered> the prediction of old Ja</remembered>
as present myself , and I <remember> to have felt quite uncom</remember>
Part II: Semistructured Data II.5: Querying a corpus
Inf1-DA 2010–2011 II: 102 / 119

Example

A concordance for all occurrences of *"Holmes"* in a corpus that consists of the Arthur Conan Doyle story *A Case of Identity*.

My dear fellow." said Sherlock <Holmes> as we sat on either a realistic effect," remarked <Holmes>. "This is wanting in the said <Holmes>, taking the paper and glancing his eye down "I have seen those symptoms before," said <Holmes>, throwing merchant-man behind a tiny pilot boat. Sherlock <Holmes> welcomed You've heard about me, Mr. <Holmes>," she cried, "else how ...

inf1-DA 2010–2011	II: 103 / 119
Frequencies	
Frequency information obtained from corpora can be u characteristics of the language represented.	sed to investigate
<i>Token count N</i> : number of tokens (words, punctuation corpus (i.e., size of the corpus).	marks, etc.) in a
Type count: number of different tokens in a corpus.	
Absolute frequency $f(t)$ of a type t : number of tokens	of type <i>t</i> in a corpus.
<i>Relative frequency of a type t</i> : absolute frequency of t token count, i.e., $f(t)/N$.	normalized by the
Here a <i>type</i> might be a single word, or its variants, or a speech.	particular part of
Part II: Semistructured Data	II.5: Querying a corpus

I-DA 2010–201	1			II: 104 / 119
Frequen	cies (example)			
The Britis	sh National Corpus	(BNC) is an im	portant reference.	
Let's com	pare some counts fi	rom the BNC w	ith counts from our sa	imple
corpus A	Case of Identity			
		BNC	A Case of Identity	
	Token count N	100,000,000	7,006	
	Type count	636,397	1,621	
	<i>f</i> (Holmes)	890	46	
	f(Sherlock)	209	7	
	f(Holmes)/ N	.0000089	.0066	
	f(Sharlock)/N	00000209	.000999	

Part II: Semistructured Data

II.5: Querying a corpus

1-DA 2010–2011	II: 105 / 119
Unigrams	
We can now ask questions such as: what are the most freq corpus?	uent words in a
• Count absolute frequencies of all word types in the co	orpus;
• tabulate them in an ordered list;	
• results: list of <i>unigram</i> frequencies (frequencies of inc	dividual words).
The next slide compares unigram frequencies for BNC and <i>Identity</i> .	d A Case of

Unigrams (e	example)				
	BNC		A Ca	se of Identity	
	6,184,914	the	350	the	
	3,997,762	be	212	and	
	2,941,372	of	189	to	
	2,125,397	a	167	of	
	1,812,161	in	163	a	
	1,372,253	have	158	Ι	
	1,088,577	it	132	that	
	917,292	to	117	it	
N.B. The artic prepositions li	the "the" is the r ke "of" and "to	nost fre " appear	quent v r in bot	vord in both con h lists; etc.	rpora;
art II: Semistructured I	Data				II.5: Querying a corpus

 International states of the product of the product

Inf1-DA 201	0–201	1				П: 108 / 119
n- i	gram	s (exan	nple)		
Cor	npute	the mos	t free	quent <i>n</i> -grams in A Co	ase c	of Identity, for $n = 2, 3, 4$.
	bi	grams		trigrams		4-grams
	40	of the	5	there was no	2	very morning of the
	23	in the	5	Mr. Hosmer Angel	2	use of the money
	21	to the	4	to say that	2	the very morning of
	21	that I	4	that it was	2	the use of the
	20	at the	4	that it is	2	the King of Bohemia
N.E con	3. <i>n-g</i> ibinat	gram freq	Juend	cies get smaller with i possible, there is incr	ncrea	asing <i>n</i> . As more word d <i>data sparseness</i> .
Part II: Semi	struct	ured Data				II.5: Querying a corpus

Inf1-DA 2010–2011	II: 110 / 119
Collocations	
<i>Collocation</i> : a sequence of words that occurs 'atypically ousage	often' in language
Examples:	
• <i>run amok:</i> the verb "run" can occur on its own, but "a	amok" can't.
• <i>strong tea:</i> sounds much better than "powerful tea" a meanings are much the same.	lthough the literal
• Phrasal verbs such as <i>make up</i> or <i>make off</i> or <i>make of</i> example, "make in").	<i>ut</i> (but not, for
• rancid butter, bitter sweet, over and above, etc.	
N.B. The inverted commas around 'atypically often' are be statistical ideas to make this precise.	because we need
Part II: Semistructured Data	II.5: Querying a corpus

 Inf1-DA 2010-2011
 II: 111 / 119

 Identifying collocations

 Task: automatically identify collocations in a large corpus.

 For example collocations with the word *tea* (see III: 109).

 • strong tea occurs in the corpus.

 This is a collocation.

 • powerful tea, in fact, does not.

 • However, more tea and little tea also occur in the corpus.

 These are not collocations. These word sequences do not occur with an atypically common frequency.

 Problem: How do we detect when a bigram (or *n*-gram) is a collocation?

strong	and	31	powerful	effect	3	
	enough	16		sight	3	
	in	15		enough	3	
	man	14		mind	3	
	emphasis	11		for	3	
	desire	10		and	3	
	upon	10		with	3	
	interest	8		enchanter	2	
	а	8		displeasure	2	
	as	8		motives	2	
	inclination	7		impulse	2	
	tide	7		struggle	2	
	beer	7		grasp	2	

Inf1-DA 2010–2011	II: 116 / 119
Searching for concordances	
The concordances in this lecture were produced using a ded for searching for concordances, the <i>Corpus Query Processo</i>	licated program
CQP is query engine which searches corpora based on user words, parts of speech, or other markup.	queries over
It uses <i>regular expressions</i> to formulate queries. This makes language very powerful	s the CQP query
An alternative to using a dedicated concordance program is query technology (XPath and XQuery) to search any corpus XML.	to use XML s implemented in
Part II: Semistructured Data	II.5: Querving a corpus

inf1-DA 2010–2011	II: 117 / 119
Corpora in Informatics	
Corpora are used extensively in two areas of inform	matics:
• <i>Natural Language Processing (NLP)</i> builds counderstand or produce text. Example applicat data include:	omputer systems that tions that rely on corpus
 Summarization: take a text and compress in or summary. Example: Newsblaster. 	it, i.e., produce an abstract
 Machine Translation (MT): take a text in a it into a text in the target language. Examp 	a source language and turn ple: Babel Fish.
• Speech Processing systems that understand or language.	r produce spoken
The techniques applied rely on probability theory, machine learning to extract statistical regularities	information theory and from corpora.
Part II: Semistructured Data	II.5: Querying a corpu

Inf1-DA 2010–2011	II: 118 / 119
Example translation by Babel Fish (originally AltaVista, now Yahoo)
O, my love is like a red, red rose,	
That's newly sprung in June.	
Robert Burns (1759–1796)	
English \rightarrow Italian:	
La O, il mio amore 'e come un rosso, colore rosso 'e aumentato That's recentemente balzata in giugno.	,
Italian \rightarrow English:	
Or, my love is like a red one, red color is increased,	
That's recently jumped in june.	
Babel Fish uses the rule-based SYSTRAN system, developed since	1968,
which analyses grammatical structure.	
Part II: Semistructured Data II.5: Q	Querying a corpus

Inf1-DA 2010–2011	II: 119 / 119
The same with Google translate	
O, my love is like a red, red rose,	
That's newly sprung in June.	
Robert Burns (1759–1796)	
English \rightarrow Italian:	
Oh, mio amore come un rosso, rosa rossa,	
Quello appena nata nel mese di giugno.	
Italian \rightarrow English:	
Oh, my love is like a red, red rose,	
That's just born in June.	
Google Translate, launched in 2006, uses statistical matching over ver	у
large multilingual corpora.	
Part II: Semistructured Data II.5: Que	erying a corpus