
Inf1-DA 2010–2011 II: 41 / 117

Part II — Semistructured Data

XML:

II.1 Semistructured data, XPath and XML

II.2 Structuring XML

II.3 Navigating XML using XPath

Corpora:

II.4 Introduction to corpora

II.5 Querying a corpus

Recommended reading:

§§3.1–3.4 of [XWT]

pp. 948–949 of [DMS] (superficial coverage only)

On-line XPath tutorial: http://www.w3schools.com/xpath/

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 42 / 117

How do we extract data from an XML document?

Since an XML document is a text document, one option is to use methods
based on text search.

But this ignores the element structure of the document.

A better alternative is to use a dedicated language for forming queries based
on the tree structure of an XML document

This has many uses, for example:

• Performing database-style queries directly on data published as XML

• Extracting annotated content from marked-up text documents

• Identifying information captured in the tree structure itself

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 43 / 117

XQuery and XPath

XQuery is a powerful declarative query language for extracting information
from XML documents.

However, the XQuery language is too complex for this course. (See [XWT]
for further information.)

XPath is a sublanguage of XQuery, used specifically for navigating XML
documents using path expressions.

XPath can be viewed as a rudimentary query language in its own right.

It is also an important component of many XML application languages
other than XQuery (e.g., XML Schema, XSLT, XLink, XPointer).

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 44 / 117

Location paths

A location path (a.k.a. path expression) retrieves a set of nodes from an
XML document tree.

• The location path describes a set of possible paths from the root of the
tree.

• The set of nodes retrieved is the set of all nodes reached as final
destinations of the described paths.

• This set of nodes is returned as a list of nodes (without duplicates)
sorted in document order (the order in which the nodes appear in the
XML document)

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 45 / 117

Document order Siblings of A

Ancestors of A Descendants of A

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 46 / 117

Example location paths

The next few slides illustrate a selection of location paths. Each is given
twice: above using the full XPath syntax, and below using a convenient
abbreviated syntax.

In each case, the retrieved nodes are highlighted in red. These nodes will be
returned as a list in document order.

Paths are built up step-by-step as the location path is read from left-to-right.

Each path is constructed by a context node that travels over the tree,
according to certain rules, depending on the continuation of the location
path expression.

The slash / at the start of a location path indicates that the starting position
for the context node is the root node.

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 47 / 117

/child::Gazetteer

/Gazetteer

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 48 / 117

/child::Gazetteer/child::Country

/Gazetteer/Country

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 49 / 117

/child::Gazetteer/child::Country/child::Region

/Gazetteer/Country/Region

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 50 / 117

/descendant::Region

//Region

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 51 / 117

/descendant::Region/child::*
//Region/*

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 52 / 117

/descendant::Region/descendant::*
//Region//*

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 53 / 117

/descendant::Region/descendant::node()

//Region//node()

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 54 / 117

/descendant::Region/descendant::text()

//Region//text()

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 55 / 117

/descendant::Feature/attribute::type

//Feature/@type

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 56 / 117

General unabbreviated syntax of location paths

A location path is a sequence of location steps separated by a / character.

A location step has the form

axis::nodeTest predicate*

• The axis tells the context node which way to move.

• The node test selects nodes of an appropriate type from the tree.

• The optional predicates supply conditions that need to be satisfied for
the path to be allowed to count towards the result.

N.B., the previous examples contained only axes and node tests.

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 57 / 117

A selection of axes

• child : the children of the context node (remember, an attribute node
does not count as a child node)

• descendant : the descendants of the context node (again, an attribute
node does not count as a descendant).

• parent : the unique parent of the context node (where the context
node must not be the root node).

• attribute : all attribute nodes of the context node (which must be
an element node).

• self : the context node itself (this is useful in connection with
abbreviations).

• descendant-or-self : the context node together with its
descendants.

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 58 / 117

A selection of node tests

Node tests filter the nodes selected by the current axis according to the type
of node.

• text() : selects only character data nodes.

• node() : selects all nodes.

• * : if the axis is attribute then all attribute nodes are selected; for
any other axis, all element nodes are selected.

• name : selects the nodes with the given name.

The names used for node tests in the earlier examples were:
Gazetteer, Country, Region, Feature and type.

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 59 / 117

Predicates

The node test in a location step may be followed by zero, one or several
predicates each given by an expression enclosed in square brackets.

Common examples of predicates are:

• [locationPath ]

This selects only those nodes for which there exists a continuation path
(from the current node) matching locationPath.

• [locationPath =value]

Selects those nodes for which there exists a continuation path matching
locationPath such that the final node of the path is equal to
value.

The full syntax of XPath predicate expressions is rather powerful, but
beyond the scope of the course.

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 60 / 117

/descendant::Feature[attribute::type=’Mountain’]

//Feature[@type=’Mountain’]

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 61 / 117

/descendant::Feature[attribute::type=’Mountain’]/child::text()

//Feature[@type=’Mountain’]/text()

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 62 / 117

//Feature[@type=’Mountain’]/../Name/text()

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 63 / 117

XPath as a query language

The previous examples illustrate XPath as a rudimentary query language.

The queries formulated are:

• Slide II: 60 : Find every feature element for which the feature is a
mountain.

• Slide II: 61 : Find the name of every mountain.

• Slide II: 62 : Find the name of every region in which there is a
mountain.

The last query was given only in abbreviated form. The full version is more
cumbersome:

/descendant::Feature[attribute::type=’Mountain’]/

parent::*/child::Name/child::text()

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 64 / 117

Abbreviated syntax

The abbreviated syntax is more economical and often (but not always!)
more intuitive.

The XPath abbreviations are:

• The syntax child:: may be omitted from a location step altogether.
(The child axis is chosen as default.)

• The syntax @ is an abbreviation for: attribute::

• The syntax // is an abbreviation for:

/descendant-or-self::node()/

• The syntax .. is an abbreviation for: parent::node()

• The syntax . is an abbreviation for: self::node()

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 65 / 117

Queries and alternatives

Consider again the last query above:

Find the name of every region in which there is a mountain.

An alternative location path for this is:

//Region[Feature/@type=’Mountain’]/Name/text()

Similarly, consider:

Find the name of countries containing a feature called Everest.

Two queries for this are:

//Feature[text()=’Everest’]/../../Name/text()

//Country[.//Feature/text()=’Everest’]/Name/text()

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 66 / 117

One subtle point

A subtle point with XPath is illustrated by the second solution above to:

Find the name of countries containing a feature called Everest.

While the given query (repeated below) is correct,

//Country[.//Feature/text()=’Everest’]/Name/text()

the following (natural) attempt would be incorrect:

//Country[//Feature/text()=’Everest’]/Name/text()

The problem is that the location path //Feature/text() starts with a /
character, and this means that XPath interprets this path as starting at the
root node, whereas the path needs to start at the current node.

The omission of a necessary ‘.’ character at the start of a predicate
expression is a common source of errors in XPath.

Part II: Semistructured Data II.3: Navigating XML using XPath



Inf1-DA 2010–2011 II: 67 / 117

More on XPath

In practice, when using XPath, one often needs to prefix the location path
with a pointer to the given XML document; e.g.,

doc("gazetter.xml")//Feature[@type=’Mountain’]/text()

Other features in XPath include: navigation based on document order,
position and size of context, treatment of namespaces, a rich language of
expressions.

For full details on XPath and XQuery see the W3C specification:

http://www.w3.org/TR/xpath

A tutorial can be found at:

http://www.w3schools.com/xpath/

Part II: Semistructured Data II.3: Navigating XML using XPath


