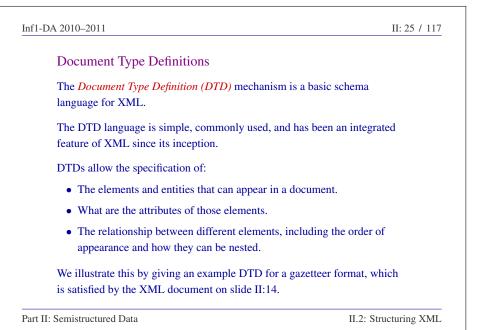
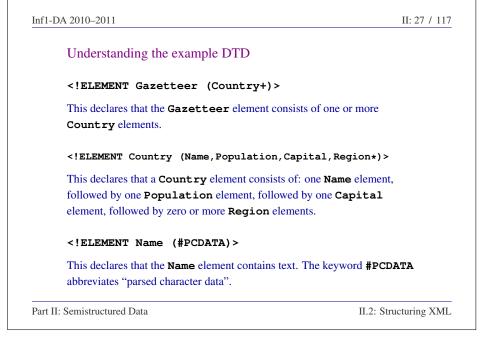
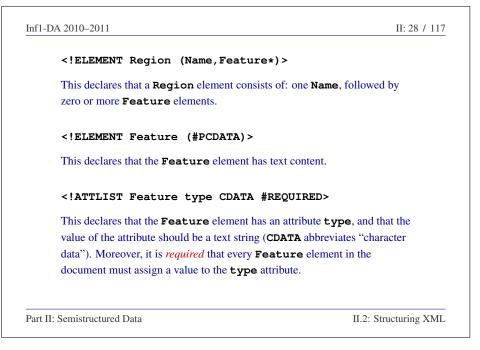

| <capital>Ljubljana<region></region></capital>                                                           | tal>                              |
|---------------------------------------------------------------------------------------------------------|-----------------------------------|
| <name>Gorenjska</name> <feature type="Lake">Ba</feature>                                                | phinj                             |
| <feature mountain<="" th="" type="Mountain&lt;br&gt;&lt;Feature type="><th>n"&gt;Triglav</th></feature> | n">Triglav                        |
| <br>                                                                                                    | •                                 |
| data for other count:<br                                                                                | ries here>                        |
| Part II: Semistructured Data                                                                            | II.1: Semistructured data and XML |


| af1-DA 2010–2011                                                                     | II: 20 / 117                      |
|--------------------------------------------------------------------------------------|-----------------------------------|
| Unicode                                                                              |                                   |
| An XML document is a text document                                                   | written in Unicode.               |
| Unicode is a universal code for "text ch around 100,000 different characters.        | aracters", currently supporting   |
| The Unicode characters contain the star<br>many, many other characters in use wor    |                                   |
| Each character has an assigned <i>code po</i> and 1,114,111 inclusive (hexadecimal 0 |                                   |
| The actual representation of Unicode te                                              | ext in memory or "on the wire"    |
| depends on a choice of <i>encoding</i> of Un                                         | icode character sequences as byte |
| streams. The most common encoding is                                                 | s known as UTF-8; others include  |
| UTF-16 and UTF-32.                                                                   |                                   |
| art II: Semistructured Data                                                          | II.1: Semistructured data and XML |

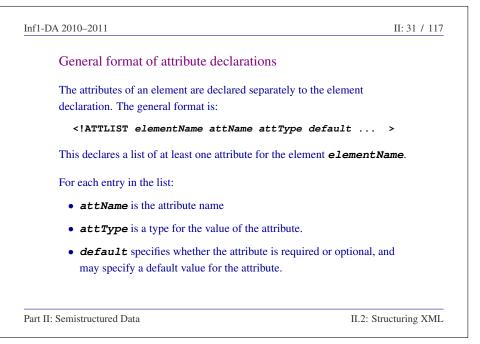



| f1-DA 2010–2011                         | II: 22 / 117          |
|-----------------------------------------|-----------------------|
| Part II — Semistructured Data           |                       |
| XML:                                    |                       |
| II.1 Semistructured data, XPath and XML |                       |
| II.2 Structuring XML                    |                       |
| <b>II.3</b> Navigating XML using XPath  |                       |
| Corpora:                                |                       |
| II.4 Introduction to corpora            |                       |
| <b>II.5</b> Querying a corpus           |                       |
| Related reading: §§4.1–4.3 of [XWT]     |                       |
| §7.4.2 of [DMS]                         |                       |
| rt II: Semistructured Data              | II.2: Structuring XMI |


| nf1-DA 2010–2011                                                                                    | II: 23 / 117          |
|-----------------------------------------------------------------------------------------------------|-----------------------|
| Structuring XML                                                                                     |                       |
| In a given XML application area, there is often an intende XML document should possess.             | ed structure that an  |
| For example, in the <b>Gazetteer</b> example, we expect the to respect the natural hierarchy:       | various elements      |
| • the Country elements are inside Gazetteer;                                                        |                       |
| <ul> <li>the Name (of the country), Population, Capital<br/>elements are inside Country;</li> </ul> | L and Region          |
| • and the Name (of the region) and Feature elements Region.                                         | s are inside          |
| Moreover, the <b>Feature</b> elements assign a suitable value type.                                 | to the attribute      |
| Part II: Semistructured Data                                                                        | II.2: Structuring XML |

| Inf1-DA 2010–2011                                                                                                                                          | II: 24 / 117                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Schema languages for XML                                                                                                                                   |                                      |
| In relational databases, a schema specifies the form                                                                                                       | nat of a relation (table).           |
| A <i>schema language</i> for XML is a language designer format of XML documents.                                                                           | ed for specifying the                |
| The use of a schema language has two main advant<br>informal specification (cf. the informal and partial<br><b>Gazeteer</b> format on the previous slide): |                                      |
| • It is precise and unambiguous                                                                                                                            |                                      |
| • It is possible for a machine to check whether a satisfies a given schema specification ( <i>validati</i>                                                 |                                      |
| If an XML document $X$ has the format specified b<br>we say that $X$ is <i>valid</i> with respect to $S$ .                                                 | y a given schema $oldsymbol{S}$ then |
| Part II: Semistructured Data                                                                                                                               | II.2: Structuring XMI                |



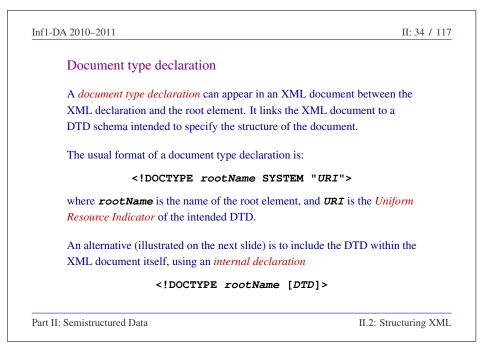

| Inf1-DA 2010–2011                                                                 | II: 26 / 117                   |
|-----------------------------------------------------------------------------------|--------------------------------|
| Example DTD                                                                       |                                |
| ELEMENT Gazetteer (Country+)                                                      |                                |
| ELEMENT Country (Name, Population, Ca</td <td><pre>apital,Region*)&gt;</pre></td> | <pre>apital,Region*)&gt;</pre> |
| ELEMENT Name (#PCDATA)                                                            |                                |
| ELEMENT Population (#PCDATA)                                                      |                                |
| ELEMENT Capital (#PCDATA)                                                         |                                |
| ELEMENT Region (Name,Feature*)                                                    |                                |
| ELEMENT Feature (#PCDATA)                                                         |                                |
| ATTLIST Feature type CDATA #REQUIRE</td <td>ID&gt;</td>                           | ID>                            |
|                                                                                   |                                |
|                                                                                   |                                |
|                                                                                   |                                |
| Part II: Semistructured Data                                                      | II.2: Structuring XML          |

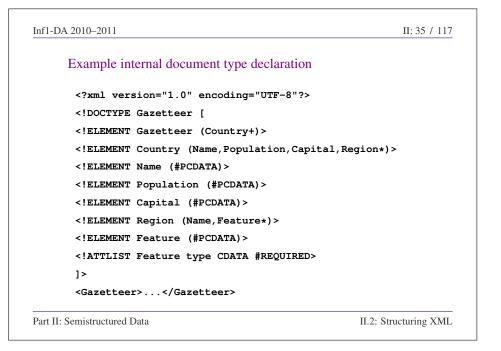


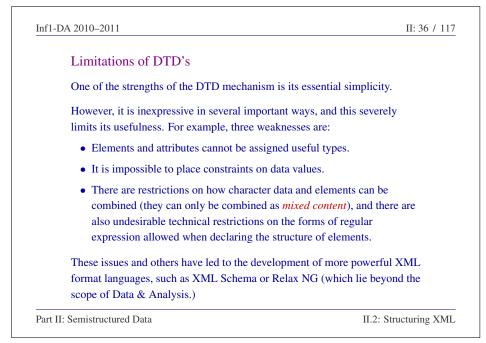


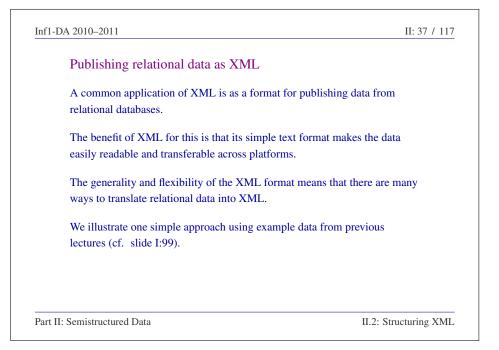
| Inf1-DA 2010–2011                                                                                                                                                                                      | II: 29 / 117    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| General format of element declarations                                                                                                                                                                 |                 |
| An <i>element declaration</i> has the structure:                                                                                                                                                       |                 |
| ELEMENT elementName (contentType)                                                                                                                                                                      |                 |
| There are four possible content types:                                                                                                                                                                 |                 |
| 1. <b>EMPTY</b> indicating that the element has no content, i.e. it is an <i>e element</i> as defined on slide II:16.                                                                                  | empty           |
| <ol> <li>ANY indicating that any content is permitted.<br/>Nevertheless elements that appear within the element content n<br/>themselves be declared by corresponding element declarations.</li> </ol> |                 |
| <ul><li>3. <b>#PCDATA</b> indicating text content.</li><li>(In fact this is an instance of a more general <i>mixed content</i> form which we shall not consider further.)</li></ul>                    | nat,            |
| Part II: Semistructured Data II.2:                                                                                                                                                                     | Structuring XML |

| Inf1-DA 2010–2011                                                        | II: 30 / 117  |
|--------------------------------------------------------------------------|---------------|
| 4. A regular expression of element names.                                |               |
| Regular expressions were introduced in Inf1 Computation and Logic.       |               |
| DTD's make use of the following format for regular expressions.          |               |
| • Any element name is a regular expression.                              |               |
| (The element names are the <i>alphabet</i> for the regular expressions.) |               |
| • exp1, exp2: first exp1 then exp2 in sequence.                          |               |
| • <i>exp</i> *: zero or more occurrences of <i>exp</i> .                 |               |
| • <i>exp</i> ?: zero or one occurrences of <i>exp</i> .                  |               |
| • <b>exp+</b> : one or more occurrences of <b>exp</b> .                  |               |
| • exp1   exp2: either exp1 or exp2.                                      |               |
| Part II: Semistructured Data II.2: Str                                   | ructuring XMI |





Inf1-DA 2010-2011 II: 32 / 117
We shall consider only the following attribute types:
String type: CDATA means that the attribute may have any text string as its value.
Enumerated type: (s<sub>1</sub> | s<sub>2</sub> | ... | s<sub>n</sub>) means that the attribute must take one of the strings s<sub>1</sub>, s<sub>2</sub>, ..., s<sub>n</sub> as its value.
And the following possibilities regarding default values:
Required: #REQUIRED means that the attribute must be explicitly assigned a value in every start tag for the element.
Optional: #IMPLIED means it is optional whether a value is assigned to the attribute or not.
Default: A fixed string can be specified as the default value for the attribute to take if no explicit value is given in the element's start tag.


Part II: Semistructured Data


II.2: Structuring XML

| Inf1-DA 2010–2011                                                                                           | II: 33 / 117                  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|
| A variation on the example                                                                                  |                               |
| Consider replacing the attribute declaration in following declaration.                                      | n the example DTD with the    |
| ATTLIST Feature type (Mountain ]</td <td>Lake River) "Mountain"&gt;</td>                                    | Lake River) "Mountain">       |
| With this new (but not with the original) decl                                                              | aration:                      |
| <feature>Ben Nevis&lt;</feature>                                                                            | /Feature>                     |
| would be a valid <b>Feature</b> element. The <b>ty</b> the default (and correct) default value <b>Mount</b> |                               |
| The element below is not valid with respect to valid for the original DTD)                                  | o the new DTD (although it is |
| <feature type="Castle">Eilea</feature>                                                                      | an Donan                      |
| because Castle is not one of the specified v                                                                | values for type.              |
| Part II: Semistructured Data                                                                                | II.2: Structuring XMI         |









Inf1-DA 2010-2011 II: 38 / 117 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE UniversityData [ <!ELEMENT UniversityData (Students, Courses, Takes)> <!ELEMENT Students (Student\*)> <!ELEMENT Student (mn, name, age, email) > <!ELEMENT Courses (C\*)> <!ELEMENT C (code, name, year)> <!ELEMENT Takes (T\*)> <!ELEMENT T (mn, name, mark) > <!ELEMENT mn (#PCDATA)> <!ELEMENT name (#PCDATA)> <!ELEMENT age (#PCDATA)> <!ELEMENT email (#PCDATA)> <!ELEMENT code (#PCDATA)> <!ELEMENT year (#PCDATA)> <!ELEMENT mark (#PCDATA)> 1> Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010-2011 II: 39 / 117 <UniversityData> <Students> <Student> <mn>s0456782</mn> <name>John</name> <age>18</age> <email>john@inf</email> </Student> <Student> <mn>s0412375</mn> <name>Mary</name> <age>18</age> <email>mary@inf</email> </Student> <Student> <mn>s0378435</mn> <name>Helen</name> <age>20</age> <email>helen@phys</email> </Student> <Student> <mn>s0189034</mn> <name>Peter</name> <age>22</age> <email>peter@math</email> </Student> </Students> <Courses> <C><code>inf1</code><name>Informatics 1</name><year>1</year></C> <C><code>math1</code><name>Mathematics 1</name><year>1</year></C> </Courses> <Takes> <T><mn>s0412375</mn><code>inf1</code><mark>80</mark></T> <T><mn>s0378435</mn><code>math1</code><mark>70</mark></T> </Takes> </UniversityData> Part II: Semistructured Data II.2: Structuring XML

| Inf1-DA 2010–2011                                                                                                                                                     | II: 40 / 117  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Efficiency                                                                                                                                                            |               |
| Relational database systems are optimised for storage efficiency.                                                                                                     |               |
| As we have seen, the XML version of relational data is extremely vert                                                                                                 | oose.         |
| Nevertheless, XML can still be stored efficiently using <i>data compressi</i> (which can be optimised for XML).                                                       | ion           |
| Furthermore, once published XML data has been downloaded, it can be<br>converted back to relational data so it can be stored efficiently in a loc<br>database system. |               |
| Converting XML to back to relational data has the benefit of enabling data to be queried ising relational database technology (i.e., SQL).                            | the           |
| An interesting alternative is to apply newer technology for directly que XML.                                                                                         | erying        |
| Part II: Semistructured Data II.2: St                                                                                                                                 | ructuring XML |