
Inf1-DA 2010–2011 II: 14 / 117

<Gazetteer>

<Country>

<Name>Slovenia</Name>

<Population>2,020,000</Population>

<Capital>Ljubljana</Capital>

<Region>

<Name>Gorenjska</Name>

<Feature type="Lake">Bohinj</Feature>

<Feature type="Mountain">Triglav</Feature>

<Feature type="Mountain">Špik</Feature>

</Region>

</Country>

<!-- data for other countries here -->

</Gazetteer>

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1-DA 2010–2011 II: 20 / 117

Unicode

An XML document is a text document written in Unicode.

Unicode is a universal code for “text characters”, currently supporting
around 100,000 different characters.

The Unicode characters contain the standard 128 ASCII characters, but also
many, many other characters in use worldwide, from another 92 scripts.

Each character has an assigned code point, which is a number between 0
and 1,114,111 inclusive (hexadecimal 0x0–0x10FFF).

The actual representation of Unicode text in memory or “on the wire”
depends on a choice of encoding of Unicode character sequences as byte
streams. The most common encoding is known as UTF-8; others include
UTF-16 and UTF-32.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1-DA 2010–2011 II: 21 / 117

Well-formed documents

An XML document is one containing text that is well-formed according to
the XML specification. This requires conformance with several technical
guidelines, including:

• It starts with an XML declaration. (Our example gazetteer document
does not!) A suitable such declaration would be:

<?xml version="1.0" encoding="UTF-8"?>

This declares the XML version, and states that UTF-8 character
encoding is to be used for Unicode. (Not examinable.)

• It has a root element that contains all other elements.

• All elements are properly nested.

As well as these basic requirements on a document, there may be other
constraints on format or content which are useful in particular situations.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1-DA 2010–2011 II: 22 / 117

Part II — Semistructured Data

XML:

II.1 Semistructured data, XPath and XML

II.2 Structuring XML

II.3 Navigating XML using XPath

Corpora:

II.4 Introduction to corpora

II.5 Querying a corpus

Related reading: §§4.1–4.3 of [XWT]

§7.4.2 of [DMS]

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 23 / 117

Structuring XML

In a given XML application area, there is often an intended structure that an
XML document should possess.

For example, in the Gazetteer example, we expect the various elements
to respect the natural hierarchy:

• the Country elements are inside Gazetteer;

• the Name (of the country), Population, Capital and Region
elements are inside Country;

• and the Name (of the region) and Feature elements are inside
Region.

Moreover, the Feature elements assign a suitable value to the attribute
type.

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 24 / 117

Schema languages for XML

In relational databases, a schema specifies the format of a relation (table).

A schema language for XML is a language designed for specifying the
format of XML documents.

The use of a schema language has two main advantages over giving an
informal specification (cf. the informal and partial specification of the
Gazeteer format on the previous slide):

• It is precise and unambiguous

• It is possible for a machine to check whether an XML document
satisfies a given schema specification (validation)

If an XML document X has the format specified by a given schema S then
we say that X is valid with respect to S.

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 25 / 117

Document Type Definitions

The Document Type Definition (DTD) mechanism is a basic schema
language for XML.

The DTD language is simple, commonly used, and has been an integrated
feature of XML since its inception.

DTDs allow the specification of:

• The elements and entities that can appear in a document.

• What are the attributes of those elements.

• The relationship between different elements, including the order of
appearance and how they can be nested.

We illustrate this by giving an example DTD for a gazetteer format, which
is satisfied by the XML document on slide II:14.

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 26 / 117

Example DTD

<!ELEMENT Gazetteer (Country+)>

<!ELEMENT Country (Name,Population,Capital,Region*)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Population (#PCDATA)>

<!ELEMENT Capital (#PCDATA)>

<!ELEMENT Region (Name,Feature*)>

<!ELEMENT Feature (#PCDATA)>

<!ATTLIST Feature type CDATA #REQUIRED>

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 27 / 117

Understanding the example DTD

<!ELEMENT Gazetteer (Country+)>

This declares that the Gazetteer element consists of one or more
Country elements.

<!ELEMENT Country (Name,Population,Capital,Region*)>

This declares that a Country element consists of: one Name element,
followed by one Population element, followed by one Capital
element, followed by zero or more Region elements.

<!ELEMENT Name (#PCDATA)>

This declares that the Name element contains text. The keyword #PCDATA
abbreviates “parsed character data”.

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 28 / 117

<!ELEMENT Region (Name,Feature*)>

This declares that a Region element consists of: one Name, followed by
zero or more Feature elements.

<!ELEMENT Feature (#PCDATA)>

This declares that the Feature element has text content.

<!ATTLIST Feature type CDATA #REQUIRED>

This declares that the Feature element has an attribute type, and that the
value of the attribute should be a text string (CDATA abbreviates “character
data”). Moreover, it is required that every Feature element in the
document must assign a value to the type attribute.

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 29 / 117

General format of element declarations

An element declaration has the structure:

<!ELEMENT elementName (contentType)>

There are four possible content types:

1. EMPTY indicating that the element has no content, i.e. it is an empty
element as defined on slide II:16.

2. ANY indicating that any content is permitted.

Nevertheless elements that appear within the element content must
themselves be declared by corresponding element declarations.

3. #PCDATA indicating text content.

(In fact this is an instance of a more general mixed content format,
which we shall not consider further.)

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 30 / 117

4. A regular expression of element names.

Regular expressions were introduced in Inf1 Computation and Logic.

DTD’s make use of the following format for regular expressions.

• Any element name is a regular expression.

(The element names are the alphabet for the regular expressions.)

• exp1, exp2 : first exp1 then exp2 in sequence.

• exp* : zero or more occurrences of exp.

• exp? : zero or one occurrences of exp.

• exp+ : one or more occurrences of exp.

• exp1|exp2 : either exp1 or exp2.

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 31 / 117

General format of attribute declarations

The attributes of an element are declared separately to the element
declaration. The general format is:

<!ATTLIST elementName attName attType default ... >

This declares a list of at least one attribute for the element elementName.

For each entry in the list:

• attName is the attribute name

• attType is a type for the value of the attribute.

• default specifies whether the attribute is required or optional, and
may specify a default value for the attribute.

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 32 / 117

We shall consider only the following attribute types:

• String type: CDATA means that the attribute may have any text string as
its value.

• Enumerated type: (s1 | s2 |...| sn) means that the attribute
must take one of the strings s1, s2, ..., sn as its value.

And the following possibilities regarding default values:

• Required: #REQUIRED means that the attribute must be explicitly
assigned a value in every start tag for the element.

• Optional: #IMPLIED means it is optional whether a value is assigned
to the attribute or not.

• Default: A fixed string can be specified as the default value for the
attribute to take if no explicit value is given in the element’s start tag.

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 33 / 117

A variation on the example

Consider replacing the attribute declaration in the example DTD with the
following declaration.

<!ATTLIST Feature type (Mountain|Lake|River) "Mountain">

With this new (but not with the original) declaration:

<Feature>Ben Nevis</Feature>

would be a valid Feature element. The type attribute would be given
the default (and correct) default value Mountain.

The element below is not valid with respect to the new DTD (although it is
valid for the original DTD)

<Feature type="Castle">Eilean Donan</Feature>

because Castle is not one of the specified values for type.

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 34 / 117

Document type declaration

A document type declaration can appear in an XML document between the
XML declaration and the root element. It links the XML document to a
DTD schema intended to specify the structure of the document.

The usual format of a document type declaration is:

<!DOCTYPE rootName SYSTEM "URI">

where rootName is the name of the root element, and URI is the Uniform
Resource Indicator of the intended DTD.

An alternative (illustrated on the next slide) is to include the DTD within the
XML document itself, using an internal declaration

<!DOCTYPE rootName [DTD]>

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 35 / 117

Example internal document type declaration

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Gazetteer [

<!ELEMENT Gazetteer (Country+)>

<!ELEMENT Country (Name,Population,Capital,Region*)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Population (#PCDATA)>

<!ELEMENT Capital (#PCDATA)>

<!ELEMENT Region (Name,Feature*)>

<!ELEMENT Feature (#PCDATA)>

<!ATTLIST Feature type CDATA #REQUIRED>

]>

<Gazetteer>...</Gazetteer>

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 36 / 117

Limitations of DTD’s

One of the strengths of the DTD mechanism is its essential simplicity.

However, it is inexpressive in several important ways, and this severely
limits its usefulness. For example, three weaknesses are:

• Elements and attributes cannot be assigned useful types.

• It is impossible to place constraints on data values.

• There are restrictions on how character data and elements can be
combined (they can only be combined as mixed content), and there are
also undesirable technical restrictions on the forms of regular
expression allowed when declaring the structure of elements.

These issues and others have led to the development of more powerful XML
format languages, such as XML Schema or Relax NG (which lie beyond the
scope of Data & Analysis.)

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 37 / 117

Publishing relational data as XML

A common application of XML is as a format for publishing data from
relational databases.

The benefit of XML for this is that its simple text format makes the data
easily readable and transferable across platforms.

The generality and flexibility of the XML format means that there are many
ways to translate relational data into XML.

We illustrate one simple approach using example data from previous
lectures (cf. slide I:99).

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 38 / 117

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE UniversityData [

<!ELEMENT UniversityData (Students,Courses,Takes)>
<!ELEMENT Students (Student*)>
<!ELEMENT Student (mn,name,age,email)>
<!ELEMENT Courses (C*)>
<!ELEMENT C (code,name,year)>
<!ELEMENT Takes (T*)>
<!ELEMENT T (mn,name,mark)>
<!ELEMENT mn (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT code (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT mark (#PCDATA)>

]>

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 39 / 117

<UniversityData>
<Students>
<Student> <mn>s0456782</mn> <name>John</name>
<age>18</age> <email>john@inf</email> </Student>

<Student> <mn>s0412375</mn> <name>Mary</name>
<age>18</age> <email>mary@inf</email> </Student>

<Student> <mn>s0378435</mn> <name>Helen</name>
<age>20</age> <email>helen@phys</email> </Student>

<Student> <mn>s0189034</mn> <name>Peter</name>
<age>22</age> <email>peter@math</email> </Student>

</Students>
<Courses>
<C><code>inf1</code><name>Informatics 1</name><year>1</year></C>
<C><code>math1</code><name>Mathematics 1</name><year>1</year></C>

</Courses>
<Takes>
<T><mn>s0412375</mn><code>inf1</code><mark>80</mark></T>
<T><mn>s0378435</mn><code>math1</code><mark>70</mark></T>

</Takes>
</UniversityData>

Part II: Semistructured Data II.2: Structuring XML

Inf1-DA 2010–2011 II: 40 / 117

Efficiency

Relational database systems are optimised for storage efficiency.

As we have seen, the XML version of relational data is extremely verbose.

Nevertheless, XML can still be stored efficiently using data compression
(which can be optimised for XML).

Furthermore, once published XML data has been downloaded, it can be
converted back to relational data so it can be stored efficiently in a local
database system.

Converting XML to back to relational data has the benefit of enabling the
data to be queried ising relational database technology (i.e., SQL).

An interesting alternative is to apply newer technology for directly querying
XML.

Part II: Semistructured Data II.2: Structuring XML

