
Inf1-DA 2010–2011 I: 52 / 117

Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple relational calculus

I.5 The SQL query language

Related reading: Chapter 4 of [DMS]: §§ 4.1,4.2

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 53 / 117

Querying

Once data is organised in a relational schema, the natural next step is to
manipulate that data. For our purposes, this means querying.

Querying is the process of identifying the parts of stored data that have
properties of interest

We consider three approaches.

• Relational algebra (today’s topic): a procedural way of expressing
queries over relationally represented data

• Tuple-relational calculus (see I.4): a declarative way of expressing
queries, tightly coupled to first order predicate logic

• SQL (see I.5): a widely implemented query language influenced by
relational algebra and relational calculus

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 54 / 117

Operators

The key concept in relational algebra is an operator

Operators accept a single relation or a pair of relations as input

Operators produce a single relation as output

Operators can be composed by using one operator’s output as input to
another operator (composition of functions)

There are five basic operators: selection, projection, union, difference and
cross-product

From these fundamentals we can also define various other operators, like
intersection, renaming, join and equijoin.

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 55 / 117

Selection and projection: σ and π

Recall that relational data is stored in tables

Selection and projection allow one to isolate any “rectangular subset” of a
single table

• Selection identifies rows of interest

• Projection identifies columns of interest

If both are used on a single table, we extract a rectangular subset of the
table

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 56 / 117

Selection: example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 57 / 117

Selection: general form

General form: σpredicate(Relation instance)

A predicate is a condition that is applied on each row of the table

• It should evaluate to either true or false

• If it evaluates to true, the row is propagated to the output, if it evaluates
to false the row is dropped

• The output table may thus have lower cardinality than the input

Predicates are written in the Boolean form

term1 bop term2 bop . . . bop termm

• Where bop ∈ {∨,∧}
• termi’s are of the form attribute rop constant or

attribute1 rop attribute2 (where rop ∈ {>,<,=, 6=,≥,≤})

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 58 / 117

Projection: example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 59 / 117

Projection: general form

General form: πcolumn list(Relation instance)

All rows of the input are propagated in the output

Only columns appearing in the column list appear in the output

Thus the arity of the output table may be lower than that of the input table

The resulting relation has a different schema!

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 60 / 117

Selection and projection: example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination

Note the algebraic equivalence between:

• σage>18(πname,age(Students))

• πname,age(σage>18(Students))

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 61 / 117

Set operations

There are three basic set operations in relational algebra:

• union

• difference

• cross-product

A fourth, intersection, can be expressed in terms of the others

All these set operations are binary.

Essentially, they are the well-known set operations from set theory, but
extended to deal with tuples

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 62 / 117

Union

LetR and S be two relations. For union, set difference and intersectionR
and S are required to have compatible schemata:

• Two schemata are said to be compatible if they have the same number
of fields and corresponding fields in a left-to-right order have the same
domains. N.B., the names of the fields are not used

The unionR ∪ S ofR and S is a new relation with the same schema asR.
It contains exactly the tuples that appear in at least one of the relationsR
and S

N.B. For naming purposes it is assumed that the output relation inherits the
field names from the relation appearing first in the specification (R in the
previous case)

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 63 / 117

Union example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math
s0489967 Basil 19 basil@inf
s9989232 Ophelia 24 oph@bio
s0289125 Michael 21 mike@geo

S1∪S2

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 64 / 117

Set difference and intersection

The set differenceR− S and intersectionR ∩ S are also new relations
with the same schema asR and S.

R− S contains exactly those tuples that appear inR but which do not
appear in S

R ∩ S contains exactly those tuples that appear in bothR and S

For both operations, the same naming conventions apply as for union

Note that intersection can be defined from set difference by
R ∩ S = R− (R− S)

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 65 / 117

Set difference example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0456782 John 18 john@inf
s0378435 Helen 20 helen@phys

S1-S2

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 66 / 117

Intersection example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0412375 Mary 18 mary@inf
s0189034 Peter 22 peter@math

S1∩S2

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 67 / 117

Cross product The cross-product (also known as the Cartesian product)

R× S of two relationsR and S is a new relation where

• The schema of the relation is obtained by first listing all the fields ofR
(in order) followed by all the fields of S (in order).

• The resulting relation contains one tuple 〈r, s〉 for each pair of tuples
r ∈ R and s ∈ S. (Here 〈r, s〉 denotes the tuple obtained by
appending r and s together, with r first and s second.)

Note that if there is a field name common toR and S then two separate
columns with this name appear in the cross-product schema, as defined
above, causing a naming conflict.

N.B. The two relations need not have the same schema to begin with.

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 68 / 117

Cross-product example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

S1

code name year
inf1 Informatics 1 1

math1 Mathematics 1 1
R

year
1
1
1
1
1
1
1
1

mn name age email
s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

code name
inf1 Informatics 1

math1 Mathematics 1s0456782 John 18 john@inf
inf1 Informatics 1

math1 Mathematics 1
inf1 Informatics 1

math1 Mathematics 1
inf1 Informatics 1

math1 Mathematics 1

s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math
s0378435 Helen 20 helen@phys

S1×R

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 69 / 117

Renaming

The renaming operator changes the names of tables and columns.

This can be used to avoid naming conflicts when the application of an
operator results in a schema with duplicate column names

General form

ρNew-relation-name(renaming-list)(Original-relation-name)

Semantics:

• The relation is assigned the new relation name

• The renaming list consists of terms of the form oldname→ newname
which rename a field named oldname to newname

• For ρ to be well-defined there should be no naming conflicts in the
output

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 70 / 117

Renaming example

mn name age email
Students

ρS(mn→sid, email→address)Students
new table name

renaming list

sid name age address
S

N.B.

• The types of the columns do not change

• Either the renaming list, or the new table name may be empty

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 71 / 117

Join

The relational joinR ./p S is the most frequently used relational operator.

It is a derived operator, it can be defined in terms of cross-product and
selection.

The format for a join isR ./p S whereR and S are relations and the join
predicate p is a predicate (as defined on slide 3.57) that applies to the
schema ofR× S.

For example, p may have the form col1rop col2 where col1, col2 are
columns ofR, S and rop ∈ {>,<,=, 6=,≥,≤}

Formally, the relational join is defined by:

R ./p S = σp(R× S)

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 72 / 117

Join example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students
Takes

inf1 80
math1 70

s0412375
s0378435

code markmn

code markmnmn name age email
s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

inf1 80
math1 70

s0412375
s0378435s0456782 John 18 john@inf

inf1 80
math1 70

s0412375
s0378435s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math

s0378435 Helen 20 helen@phys
inf1 80
math1 70

s0412375
s0378435

inf1 80
math1 70

s0412375
s0378435

Students ⋈Students.mn = Takes.mn Takes

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 73 / 117

Equijoin

An equijoin is a commonly occurring join operation in which the predicate
is a conjunction of equalities of the formR.name1 = S.name2.
(A conjunction is a list of conditions connected by ∧.)

The schema of the equijoin consists of the fields ofR, followed by just
those fields of S that are not mentioned in the join equalities. The equijoin
is computed by projecting the join onto the fields that remain (all those of
R, and those from S that have not been removed). Put more simply:
remove from the join those columns labelled with S-fields that appear in the
equalities.

Note that the example on the previous slide,
Students ./Students.mn = Takes.mn Takes, is naturally treated as an
equijoin . The resulting relation is then as before, but with the second
column labelled mn removed.

Part I: Structured Data I.3: Relational algebra



Inf1-DA 2010–2011 I: 74 / 117

Natural join

The natural join is a special equijoin in which the equalities are between all
fields that have the same name inR and S.

We simply writeR ./ S for such an equijoin.

Note that the equijoin version of the example on slide 3.72 is in fact the
natural join Students ./ Takes. (The common field name is mn.) This

is a very natural way of joining two relations, hence the name. It frequently
occurs when joining two tables in which one has a foreign key constraint
referencing the other.

Part I: Structured Data I.3: Relational algebra


