Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

- **I.3 Relational algebra**
- **I.4** Tuple relational calculus
- I.5 The SQL query language

Related reading: Chapter 4 of [DMS]: §§ 4.1,4.2

Querying

Once data is organised in a relational schema, the natural next step is to *manipulate* that data. For our purposes, this means querying.

Querying is the process of identifying the parts of stored data that have properties of interest

We consider three approaches.

- Relational algebra (today's topic): a *procedural* way of expressing queries over relationally represented data
- Tuple-relational calculus (see I.4): a *declarative* way of expressing queries, tightly coupled to first order predicate logic
- SQL (see I.5): a widely implemented query language influenced by relational algebra and relational calculus

Operators

- The key concept in relational algebra is an *operator*
- Operators accept a single relation or a pair of relations as input
- Operators produce a single relation as output
- Operators can be *composed* by using one operator's output as input to another operator (composition of functions)
- There are five basic operators: *selection*, *projection*, *union*, *difference* and *cross-product*
- From these fundamentals we can also define various other operators, like *intersection*, *renaming*, *join* and *equijoin*.

Selection and projection: σ and π

Recall that relational data is stored in *tables*

Selection and *projection* allow one to isolate any "rectangular subset" of a single table

- Selection identifies *rows* of interest
- Projection identifies *columns* of interest

If both are used on a single table, we extract a *rectangular subset* of the table

Selection: example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435		20	helen@phys
s0189034	Peter	22	peter@math

Students

Studen

 $\pi_{name, age}$ (Students)

mn	name	age	email				
s0378435	Helen	20	helen@phys				
s0189034	Peter	22	peter@math				
С	s0189034 Peter 22 peter@math $\sigma_{age>18}$ (Students)						

Combination

Selection: general form

General form: $\sigma_{\text{predicate}}$ (Relation instance)

A *predicate* is a condition that is applied on each row of the table

- It should evaluate to either true or false
- If it evaluates to true, the row is propagated to the output, if it evaluates to false the row is dropped
- The output table may thus have lower cardinality than the input

Predicates are written in the Boolean form

 $term_1$ bop $term_2$ bop ... bop $term_m$

- Where bop $\in \{\lor, \land\}$
- term_{*i*}'s are of the form attribute rop constant or attribute₁ rop attribute₂ (where rop $\in \{>, <, =, \neq, \geq, \leq\}$)

Projection: example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435		20	helen@phys
s0189034	Peter	22	peter@math

Students

name	age	
John	18	
Mary	18	
Helen	20	
Peter	22	
	Stude	nt

 $\pi_{name, age}$ (Students)

mn	name	age	email				
			helen@phys				
s0189034	Peter	22	peter@math				
С	s0189034 Peter 22 peter@math $\sigma_{age>18}$ (Students)						

Combination

Projection: general form

General form: $\pi_{\text{column list}}$ (Relation instance)

All rows of the input are propagated in the output

Only columns appearing in the *column list* appear in the output

Thus the *arity* of the output table may be lower than that of the input table

The resulting relation has a different schema!

Selection and projection: example

mn	name	age	email	name age
s0456782	John	18	john@inf	John 18
s0412375	Mary	18	mary@inf	Mary 18
s0378435	Helen	20	helen@phys	Helen 20
s0189034	Peter	22	peter@math	Peter 22
	_	-		- (Ctudonto)
	Stu	dents		$\pi_{name, age}$ (Students)
mn	Stue	dents age	email	name, age
mn s0378435	name		email helen@phys	,
	name Helen	age		name age

Note the *algebraic equivalence* between:

- $\sigma_{\text{age}>18}(\pi_{\text{name,age}}(\text{Students}))$
- $\pi_{\text{name,age}}(\sigma_{\text{age}>18}(\text{Students}))$

Set operations

There are three basic set operations in relational algebra:

- union
- difference
- cross-product

A fourth, *intersection*, can be expressed in terms of the others

All these set operations are binary.

Essentially, they are the well-known set operations from set theory, but extended to deal with tuples

Union

Let R and S be two relations. For union, set difference and intersection R and S are required to have compatible schemata:

• Two schemata are said to be *compatible* if they have the same number of fields and corresponding fields in a left-to-right order have the same domains. N.B., the names of the fields are not used

The *union* $R \cup S$ of R and S is a new relation with the same schema as R. It contains exactly the tuples that appear in at least one of the relations R and S

N.B. For naming purposes it is assumed that the output relation inherits the field names from the relation appearing first in the specification (\mathbf{R} in the previous case)

Union example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

S_1

mn	name	age	email
s0489967	Basil	19	basil@inf
s0412375	Mary	18	mary@inf
s9989232	Ophelia	24	oph@bio
s0189034	Peter	22	peter@math
s0289125	Michael	21	mike@geo

*S*₂

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math
s0489967	Basil	19	basil@inf
s9989232	Ophelia	24	oph@bio
s0289125	Michael	21	mike@geo

 $S_1 \cup S_2$

Set difference and intersection

The set difference R - S and intersection $R \cap S$ are also new relations with the same schema as R and S.

R-S contains exactly those tuples that appear in R but which do not appear in S

 $R \cap S$ contains exactly those tuples that appear in both R and S

For both operations, the same naming conventions apply as for union

Note that intersection can be defined from set difference by $R \cap S = R - (R - S)$

Set difference example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

S_1

mn	name	age	email
s0489967	Basil	19	basil@inf
s0412375	Mary	18	mary@inf
s9989232	Ophelia	24	oph@bio
s0189034	Peter	22	peter@math
s0289125	Michael	21	mike@geo

*S*₂

тп	name	age	email
s0456782	John	18	john@inf
s0378435	Helen	20	helen@phys

*S*₁-*S*₂

Intersection example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

S_1

mn	name	age	email
s0489967	Basil	19	basil@inf
s0412375	Mary	18	mary@inf
s9989232	Ophelia	24	oph@bio
s0189034	Peter	22	peter@math
s0289125	Michael	21	

*S*₂

mn	name	age	email
s0412375	Mary	18	mary@inf
s0189034	Peter	22	peter@math

 $S_1 \cap S_2$

Cross product The *cross-product* (also known as the *Cartesian product*)

 ${m R} imes {m S}$ of two relations ${m R}$ and ${m S}$ is a new relation where

- The schema of the relation is obtained by first listing all the fields of *R* (in order) followed by all the fields of *S* (in order).
- The resulting relation contains one tuple ⟨r, s⟩ for each pair of tuples
 r ∈ R and s ∈ S. (Here ⟨r, s⟩ denotes the tuple obtained by appending r and s together, with r first and s second.)

Note that if there is a field name common to \boldsymbol{R} and \boldsymbol{S} then two separate columns with this name appear in the cross-product schema, as defined above, causing a *naming conflict*.

N.B. The two relations need not have the same schema to begin with.

Cross-product example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

 S_1

code	name	year
inf1	Informatics 1	1
math1	Mathematics 1	1
	R	

email code name age mn name year s0456782 John 18 john@inf inf1 **Informatics** 1 s0456782 18 john@inf math1 Mathematics 1 Iohn 18 mary@inf inf1 Informatics 1 s0412375 Mary Mathematics 1 s0412375 Mary 18 mary@inf math1 inf1 Helen 20 helen@phys **Informatics** 1 s0378435 helen@phys math1 s0378435 Helen 20 Mathematics 1 peter@math s0189034 22 inf1 Peter **Informatics** 1 Mathematics 1 peter@math math1 s0189034 Peter 22

Renaming

The renaming operator changes the names of tables and columns.

This can be used to avoid *naming conflicts* when the application of an operator results in a schema with duplicate column names

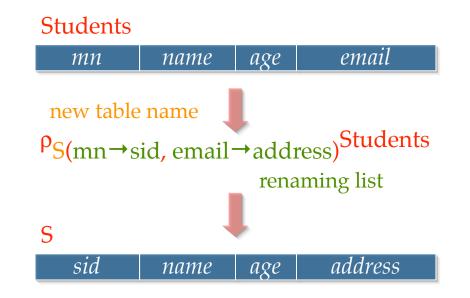
General form

 $\rho_{\text{New-relation-name}(\text{renaming-list})}$ (Original-relation-name)

Semantics:

- The relation is assigned the new relation name
- The renaming list consists of terms of the form oldname → newname which rename a field named oldname to newname
- For *ρ* to be well-defined there should be no naming conflicts in the output

Renaming example



N.B.

- The types of the columns do not change
- Either the renaming list, or the new table name may be empty

Join

The *relational join* $R \bowtie_p S$ is the most frequently used relational operator.

It is a *derived operator*, it can be defined in terms of cross-product and selection.

The format for a join is $R \bowtie_p S$ where R and S are relations and the *join predicate* p is a predicate (as defined on slide 3.57) that applies to the schema of $R \times S$.

For example, p may have the form $col_1 rop col_2$ where col_1, col_2 are columns of R, S and $rop \in \{>, <, =, \neq, \ge, \le\}$

Formally, the relational join is *defined* by:

$$R \Join_p S = \sigma_p(R imes S)$$

Join example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

Students

mn	code	mark
s0412375	inf1	80
s0378435	math1	70

Takes

mn	name	age	email	mn	code	mark
s0412375	Mary	18	mary@inf	s0412375	inf1	80
s0412375	Mary	18	mary@inf	s0378435	math1	70
s0378435	Helen	20	helen@phys	s0378435	math1	70
s0189034	Peter	22	peter@math	s0412375	inf1	80

Students ⋈ *Students.mn* = *Takes.mn Takes*

I.3: Relational algebra

Equijoin

An *equijoin* is a commonly occurring join operation in which the predicate is a conjunction of equalities of the form R.name₁ = S.name₂. (A *conjunction* is a list of conditions connected by \land .)

The schema of the equijoin consists of the fields of \boldsymbol{R} , followed by just those fields of \boldsymbol{S} that are not mentioned in the join equalities. The equijoin is computed by *projecting* the join onto the fields that remain (all those of \boldsymbol{R} , and those from \boldsymbol{S} that have not been removed). Put more simply: remove from the join those columns labelled with \boldsymbol{S} -fields that appear in the equalities.

Note that the example on the previous slide,

Students $\bowtie_{\text{Students.mn}} = _{\text{Takes.mn}}$ Takes, is naturally treated as an equijoin. The resulting relation is then as before, but with the second column labelled mn removed.

Natural join

The *natural join* is a special equijoin in which the equalities are between *all* fields that have the same name in \mathbf{R} and \mathbf{S} .

We simply write $R \bowtie S$ for such an equijoin.

Note that the equijoin version of the example on slide 3.72 is in fact the natural join Students 🖂 Takes. (The common field name is mn.) This

is a very natural way of joining two relations, hence the name. It frequently occurs when joining two tables in which one has a foreign key constraint referencing the other.