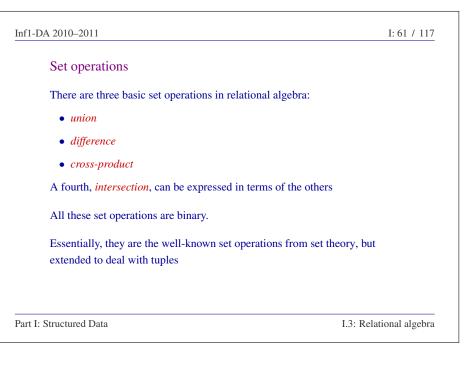
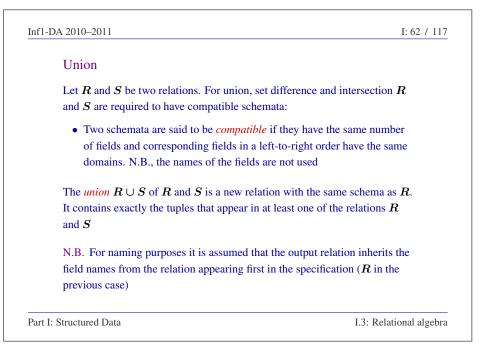
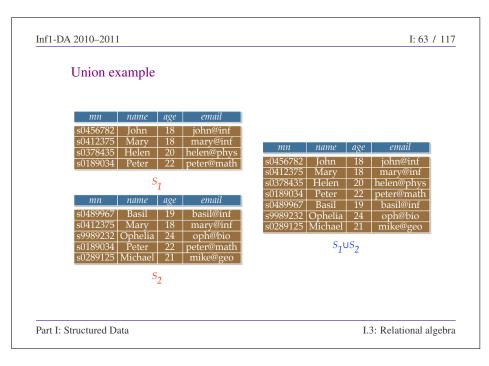
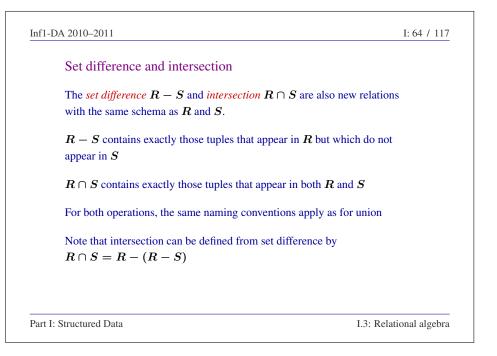

Inf1-DA 2010–2011	I: 52 / 117
Part I — Structured Data	
Data Representation:	
I.1 The entity-relationship (ER) data model	
I.2 The relational model	
Data Manipulation:	
I.3 Relational algebra	
I.4 Tuple relational calculus	
I.5 The SQL query language	
Related reading: Chapter 4 of [DMS]: §§ 4.1,4.2	
Part I: Structured Data	I.3: Relational algebra

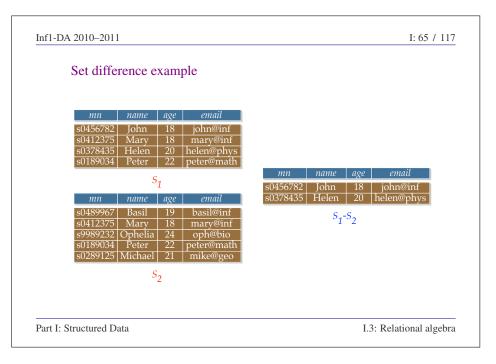
nf1-DA 2010–2011	I: 55 / 117
Selection and projection: σ and π	
Recall that relational data is stored in <i>tables</i>	
<i>Selection</i> and <i>projection</i> allow one to isolate any "rectangular subsingle table	set" of a
• Selection identifies <i>rows</i> of interest	
• Projection identifies <i>columns</i> of interest	
If both are used on a single table, we extract a <i>rectangular subset</i> table	of the
Part I: Structured Data I.3	3: Relational algebra

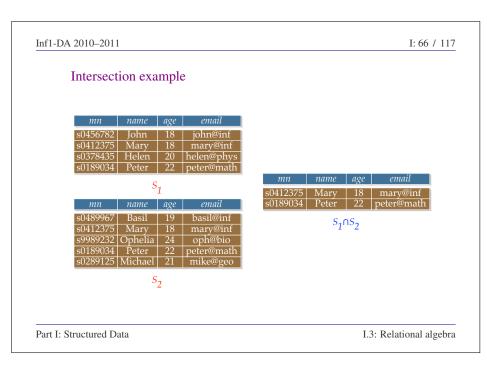

			I: 56 / 117
Selection: example			
mn name ag	e email		
s0456782 John 18			
s0412375 Mary 18 s0378435 Helen 20			
s0189034 Peter 22			
Student	ts	$\pi_{name, age}$ (Students)	
mn name ag	e email		
s0378435 Helen 20 s0189034 Peter 22			
σ _{age>18} (Stu		Combination	

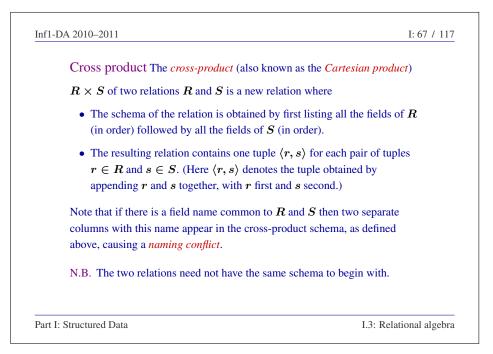


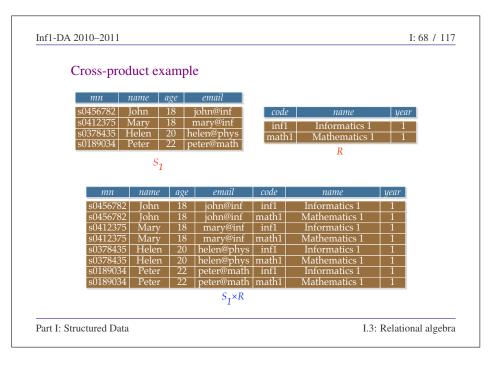

	example	
mn	name age en	nail name age
s045678		@inf John 18
s04123		y@inf Mary 18
s037843 s018903		@physHelen20@mathPeter22
301070	Students	
	Students	$\pi_{name, age}^{(Students)}$
mn	name age en	nail name age
s03784		@phys Helen 20
s018903		@math Peter 22
	$\sigma_{age>18}^{(Students)}$	Combination
	age>10	

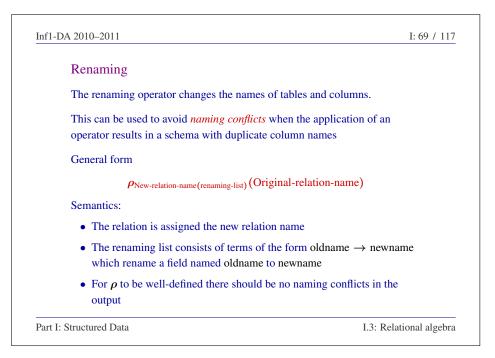

All rows of the input are propagated in the output
Only columns appearing in the <i>column list</i> appear in the output
Thus the <i>arity</i> of the output table may be lower than that of the input table
The resulting relation has a different schema!

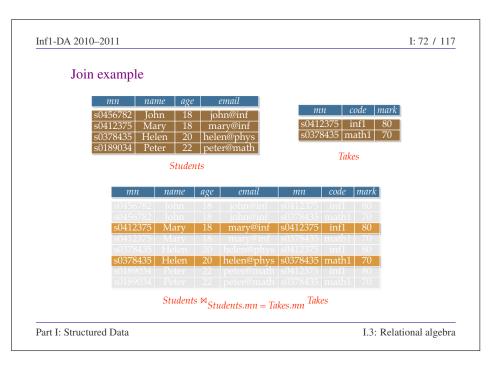

Inf1-DA 2010–2011	I: 60 / 117
Selection and projection: example	
mnnameageemails0456782John18john@infs0412375Mary18mary@infs0378435Helen20helen@physs0189034Peter22peter@mathStudents	nameageJohn18Mary18Helen20Peter22πname, age(Students)
mnnameageemails0378435Helen20helen@physs0189034Peter22peter@mathσ age>18(Students)	nameageHelen20Peter22Combination
Note the <i>algebraic equivalence</i> between: • $\sigma_{age>18}(\pi_{name,age}(Students))$ • $\pi_{name,age}(\sigma_{age>18}(Students))$	
Part I: Structured Data	I.3: Relational algebra

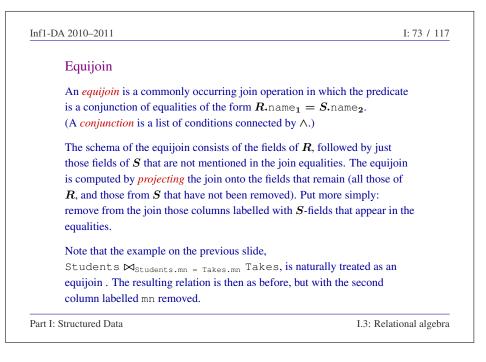












inf1-DA 2010–2011		I: 70 / 11
Renaming e	xample	
	Students mn $name$ age $emailnew table name\rho_{S(mn \rightarrow sid, email \rightarrow address)}Studentsrenaming listS$	
N.B.	sid name age address	
	of the columns do not change renaming list, or the new table name may be empt	у
Part I: Structured Data	I	3: Relational algebr

nf1-DA 2010–2011	I: 71 / 117
Join	
The <i>relational join</i> $R \Join_p S$ is the most frequence	ntly used relational operator.
It is a <i>derived operator</i> , it can be defined in term selection.	ns of cross-product and
The format for a join is $R \bowtie_p S$ where R and <i>predicate</i> p is a predicate (as defined on slide 3. schema of $R \times S$.	
For example, p may have the form $col_1 rop col_columns$ of R, S and $rop \in \{>, <, =, \neq, \ge$	
Formally, the relational join is <i>defined</i> by:	
$R \bowtie_p S = \sigma_p(R \times$	S)
art I: Structured Data	I.3: Relational algebra

nf1-DA 2010–2011	I: 74 / 117
Natural join	
The <i>natural join</i> is a special equijoin in which the equalit fields that have the same name in R and S .	ties are between <i>all</i>
We simply write $R \bowtie S$ for such an equijoin.	
Note that the equijoin version of the example on slide 3.7 natural join Students 🖂 Takes. (The common field it	
is a very natural way of joining two relations, hence the n occurs when joining two tables in which one has a foreign referencing the other.	1 0
Part I: Structured Data	I.3: Relational algebra