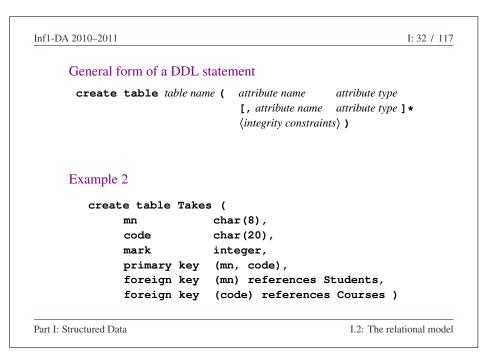
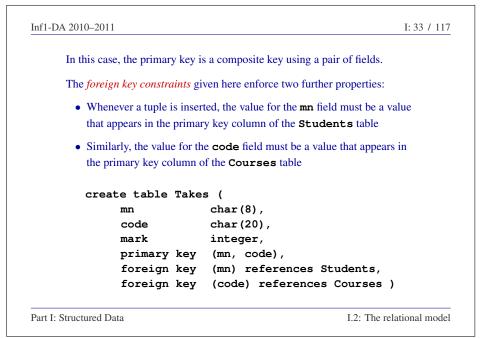
f1-DA 2010–2011	I: 24 / 117
Part I — Structured Data	
Data Representation:	
I.1 The entity-relationship (ER) data model	
I.2 The relational model	
Data Manipulation:	
I.3 Relational algebra	
I.4 Tuple relational calculus	
I.5 The SQL query language	
Required reading: Chapter 3 of [DMS], §§ 3.1,3.2,3.4,	3.5
rt I: Structured Data	I.2: The relational model

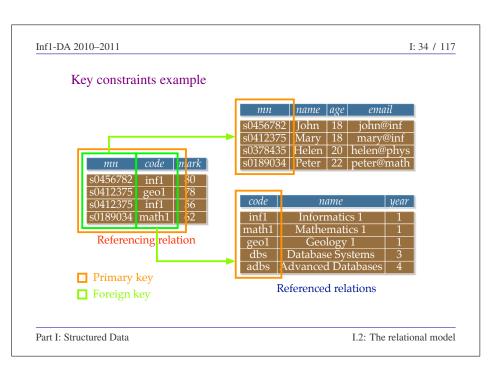
Inf1-DA 2010–2011	I: 25 / 117
History of relational model	
• The <i>relational model</i> was introduced in 1	970 by Edgar F. Codd, a
British computer scientist working at IBM	I's Almaden Research Center
in San Jose, California.	
• IBM was initially slow to exploit the idea	, but by the mid 1970's IBM
was at the forefront of the commercial de	velopment of relational
database systems with its System R proje	ct, which included the
development and first implementation of	SQL. (Codd was sidelined
from this project!)	
• Around the same time, the relational mod	lel was developed and
implemented at UC Berkeley (the Ingres	project)
• Nowadays relational databases are a mult	i-billion pound industry.
• A major reason for the success of the rela	tional model is its simplicity
• Codd received the 1981 <i>Turing Award</i> for	his pioneering work on
relational databases	
Part I: Structured Data	I.2: The relational model

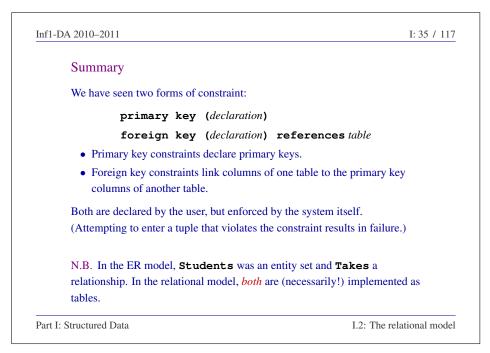
Inf1-DA 2010-2011 I: 26 / 117 Building blocks • The basic construct is a *relation*. - It consists of a *schema* and an *instance* - The *schema* can be thought of as the format of the relation - A *relation instance* is also known as a *table* • A *schema* is a set of fields, which are (name, domain) pairs - *fields* may be referred to as attributes, or columns - *domains* are referred to as types • The rows of a table are called *tuples* (or *records*) and they are value assignments from the specified domain for the fields of the table • The *arity* of a relation is its number of columns (fields) • The *cardinality* of a table is its number of rows (tuples) Part I: Structured Data I.2: The relational model

Example				
	Field	s (a.k.a.	attrib	utes, columns)
		- ×	- +	
Schema ——	<mark>→</mark> mn	name	age	email
Tuples	s0456782	John	18	john@inf
(a.k.a. records,	s0412375	Mary	18	mary@inf
rows)	s0378435	Helen	20	helen@phys
10///3)	s0189034	Peter	22	peter@math


Inf1-DA 2010–2011	I: 28 / 11
SQL: The Structured Query Language	
• SQL is the standard language for interacting management systems	g with relational database
• Substantial parts of SQL are <i>declarative</i> : co done, not necessarily how to do it.	ode states what should be
• When actually querying a large database, database, database of this to plan, rearrange, and oper queries.	· · · · · · · · · · · · · · · · · · ·
• Procedural parts of SQL do contain <i>imperat</i> to the database.	<i>tive</i> code to make changes
• While SQL is an international standard (ISC implementations have notable idiosyncrasie entirely portable.	
Part I: Structured Data	I.2: The relational mode


Data definition in SQL	
• A special subset of SQL called the <i>Data Definit</i> used to declare table schemata	ion Language (DDL) is
• Relations are called <i>tables</i> in SQL	
• It is a typed language	
 For simplicity, we will assume there are only integer for integer numbers, (ii) real for point), and (iii) char (n) for a string of ma 	or real numbers (floating
- There is also a special null value, which w	e see briefly later.


I.2: The relational model


General form of a	a DDL stater	nent		
create table	table name ([, att	tte name ribute name rity constrain	attribute type] *
Example 1	eate table	Stud	ents (
	mn name age email		char(8), char(20) integer, char(15)	
	primary	key		,

The example define	s the Students table.		
The last line impler chosen primary key	nents a <i>primary key con</i> for Students.	straint, it declares mn	to be the
1	ires that the Student value. This is enforced b		st one row
Any attempt to inse some other row of t	rt a new row with an mr he table will fail.	value that already ex	ists in
c	reate table Stud	ents (
	mn	char(8),	
	name	char(20),	
	age	integer,	
	email	char(15),	
	primary key	(mn))	

