
Inf1, Data & Analysis, 2010 II: 1 / 117

Informatics 1, 2010
School of Informatics, University of Edinburgh

Data and Analysis

Part II
Semistructured Data

Alex Simpson

Part II: Semistructured Data

Inf1, Data & Analysis, 2010 II: 2 / 117

Part II — Semistructured Data

XML:

II.1 Semistructured data and XML

II.2 Structuring XML

II.3 Navigating XML using XPath

Corpora:

II.4 Introduction to corpora

II.5 Querying a corpus

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 3 / 117

Recommended reading

[DMS], pp. 227–231, covers the topic, but rather superficially.

For a more in-depth treatment see Chapter 2 of:

[XWT] An Introduction to XML and Web Technologies

A. Møller and M. Schwartzbach

Addison Wesley, 2006

“A superb summary of the main Web technologies. It is broad and
deep giving you enough detail to get real work done. Eminently
readable with excellent examples and touches of humour. This
book is a gem.”

Prof. Philip Wadler, University of Edinburgh

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 4 / 117

Background

Relational databases record data in tables conforming to relational
schemata. This imposes rigid structure on data

In many situations, it is useful to structure data in a less rigid way; for
example:

• when the data needs to be made publicly available in a standard and
easily readable data format;

• when we wish to mark up (i.e. annotate) existing unstructured data (e.g.
text) with additional information (e.g. semantic information);

• when the data possesses a natural hierarchical structure and/or the
structure of the data we wish to record varies from item to item.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 5 / 117

Semistructured data

Semistructured data imposes a loose structure on data, hence the choice of
terminology.

The principal structure imposed on data is that of a tree.

Before seeing how trees are used to structure data, we review basic
terminology for talking about trees.

Recall, a tree consists of a set of nodes, amongst which there is a unique
root node. For every node in the tree, there is a unique path from the root
node to the node.

Nodes separate into two disjoint classes: leaves and internal nodes.

Every node other than the root has a unique parent node. Every internal
node has a nonempty set of children nodes.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 6 / 117

Root node Leaves and internal nodes

Parent of A Children of A

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 7 / 117

Semistructured data models

Data is incorporated into a tree structure using a semistructured data model.

There are several different such data models.

We shall use the XPath data model (chosen because its structure
corresponds exactly to XML).

The next slide illustrates an example of data structured according to the
XPath data model.

The chosen example, a fragment of a gazetteer, is given because it is one
that is naturally accommodated within a hierarchical tree-based structure.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 8 / 117

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 9 / 117

Types of node in the XPath data model

Root node. This is the root of the tree. It is labelled /.

Element nodes. These are nodes labelled with element names, which serve
the purpose of categorising the data below them. In the example, the
element names are: Gazetteer, Country, Name, Population,
Capital, Region, and Feature. In the XPath data model, internal
nodes other than the root are always element nodes.

The root node is required to have a single element node as child, called the
root element (since it is root in the tree of all element nodes). In the
example, the root element is Gazetteer.

Text nodes. These are leaves of the tree where textual information is stored.
In the example, the text strings "Slovenia", "2,020,000",
"Ljubljana", "Gorenjska", "Triglav", "Bohinj" and "Špik"
appear at text nodes.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 10 / 117

Attribute nodes

Attribute nodes are leaves of the tree in which an attribute associated with
the parent element node is assigned a value. In the example, we use the @
symbol to identify attributes. There is a single attribute type, it is
associated with the Feature element, and it is assigned the text values
"Lake" and "Mountain".

In the XPath data model, attribute nodes are treated differently from other
nodes.

Although the parent of an attribute node is an element node, when we talk
about the children of this parent node, attribute nodes are not considered to
be amongst them.

Since this can be confusing, explicit warnings will be given in situations in
which confusion might arise.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 11 / 117

Understanding the tree

The meaning of the data at a text node depends on the element nodes that
appear along the path from the root of the tree to the leaf, and on the values
of the attributes to this node.

For example, the path to Bohinj is

/Gazetteer/Country/Region/Feature/

and the value of the type attribute of the associated Feature element is
"Lake". This tells us that Bohinj is a feature in a region in a country in the
gazetteer, and that the type of feature is a lake.

Note that to get further information (such as the name of the country,
Slovenia), we need to extract it by following another path within the
relevant ancestor element (in this case, the Country element).

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 12 / 117

Similarly, the meaning of an element node depends on the path to the node
from the root of the tree.

For example, the element Name is used in two different ways.

A path /Gazetteer/Country/Name/ leads to a text node containing
the name of a country.

A path /Gazetteer/Country/Region/Name/ leads to a text node
containing the name of a region.

XML is a text-based language for presenting exactly the same
tree-structured information as the XPath data model.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 13 / 117

Extensible Markup Language (XML)

This is a markup language, that is it provides a mechanism, based on
elements (also called tags), for annotating (marking up) ordinary text with
additional information.

It was developed in the mid 1990’s from the Standard General Markup
Language (SGML) and Hypertext Markup Language (HTML).

XML has a simple text-based format which provides a convenient basis for
making data widely available, e.g. over the web. Indeed, XML has become
the de facto standard for publishing data on the web.

The next slide presents the gazetteer example in XML format.

The content and structure are identical to that of the tree presented earlier.
Only the format is different.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 14 / 117

<Gazetteer>

<Country>

<Name>Slovenia</Name>

<Population>2,020,000</Population>

<Capital>Ljubljana</Capital>

<Region>

<Name>Gorenjska</Name>

<Feature type="Lake">Bohinj</Feature>

<Feature type="Mountain">Triglav</Feature>

<Feature type="Mountain">Špik</Feature>

</Region>

</Country>

<!-- data for other countries here -->

</Gazetteer>

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 15 / 117

XML Elements

Elements (also called tags) are the building blocks of XML documents.

The start of the content of an element elm is marked with the start tag
<elm>, and the end of the content is marked with the end tag </elm>.

Elements must be properly nested. Thus,

<Country><Region> ... </Region></Country>

is legal, whereas

<Country><Region> ... </Country></Region>

is illegal.

Elements are case sensitive, so REGION would be different from Region.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 16 / 117

The content of the Capital element

<Capital>Ljubljana</Capital>

is the text string "Ljubljana".

The content of the Region element consists of one Name element together
with three Feature elements in sequence.

The root element Gazetteer encloses all information in the document.

Although there are no such examples in the example document, the content
of an element may be empty, e.g.,

<elm></elm>

Such empty elements can be abbreviated using a single hybrid tag:

<elm/>

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 17 / 117

Attributes

An element can have descriptive attributes that provide additional
information about the element. For example,

<Feature type="Mountain"> ... </Feature>

sets the attribute type of the given Feature element to have value
Mountain.

Note that attribute values are enclosed in quotation marks (either double or
single quotes).

It is possible for one element to have several different attributes, with values
defined in sequence within the start tag, e.g.

<elm attr1="value1" attr2="value2"> ... </elm>

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 18 / 117

Relating XML and the tree model

The existence of a root element together with the proper nesting of elements
ensures that every XML document carries a tree structure in a natural way:

• Each element of the XML document corresponds to an individual
element node of the tree.

• The root element of the XML document corresponds to the root
element (but not the root node) of the tree.

• The text content of an individual XML element corresponds to a child
text node of the corresponding element node in the tree.

• An attribute definition in an element’s start tag corresponds to a child
attribute node of the corresponding element node in the tree.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 19 / 117

Comments and processing instructions

Comments can be inserted anywhere in an XML document. Comments start
with <!-- and end with -->. They can contain arbitrary text apart from
the string --.

The full XPath data model also contains comment nodes which correspond
to XML comments. We have do not consider such nodes in our tree model
for two reasons:

1. Simplicity.

2. We have included all the types of node that should be used to store data.
Comments should instead be used as aids to the interpretation of the
data represented.

XML and the XPath data model also allow processing instructions to be
included. These are beyond the scope of this course.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 20 / 117

Unicode

An XML document is a text document written in Unicode.

Unicode is a universal code for “text characters”, currently supporting
around 100,000 different characters.

The Unicode characters contain the standard ASCII character set, but also
all “characters” in human use worldwide. (The majority of the 100,000
assigned characters are Chinese!)

Each character has an assigned code point, which is a number between 0
and 1,114,112.

The actual digital representation of Unicode text depends on a choice of
encodings of Unicode character sequences as byte streams. Common
choices of encoding are: UTF-8, UTF-16, UTF-32, ISO-8859-1.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 21 / 117

Well-formed documents

An XML document is well-formed if it conforms to three guidelines:

• It starts with an XML declaration. (Our example gazetteer document
does not!) A suitable such declaration would be:

<?xml version="1.0" encoding="UTF-8"?>

This declares the XML version, and states that UTF-8 character
encoding is to be used for Unicode. (Such declarations are not
examinable. In Data & Analysis, we are interested in the content of a
document not in its declaration.)

• It has a root element that contains all other elements.

• All elements are properly nested.

These are minimal requirements on a document. Often there will be other
constraints we wish to impose.

Part II: Semistructured Data II.1: Semistructured data and XML

Inf1, Data & Analysis, 2010 II: 22 / 117

Part II — Semistructured Data

XML:

II.1 Semistructured data and XML

II.2 Structuring XML

II.3 Navigating XML using XPath

Corpora:

II.4 Introduction to corpora

II.5 Querying a corpus

Recommended reading: §§4.1–4.3 of [XWT]

§7.4.2 of [DMS]

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 23 / 117

Structuring XML

In a given XML application area, there is often an intended structure that an
XML document should possess.

For example, in the Gazetteer example, we expect the various elements
to respect the natural hierarchy:

• the Country elements are inside Gazetteer;

• the Name (of the country), Population, Capital and Region
elements are inside Country;

• and the Name (of the region) and Feature elements are inside
Region.

Moreover, the Feature elements assign a suitable value to the attribute
type.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 24 / 117

Schema languages for XML

In relational databases, a schema specifies the format of a relation (table).

A schema language for XML is a language designed for specifying the
format of XML documents.

The use of a schema language has two main advantages over giving an
informal specification (cf. the informal and partial specification of the
Gazeteer format on the previous slide):

• It is precise.

• It can be machine checked if an XML document satisfies (validates) a
given schema specification.

If an XML document X has the format specified by a given schema S then
we say that X is valid with respect to S.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 25 / 117

Document Type Definitions

The Document Type Definition (DTD) mechanism is a basic schema
language for XML.

The language is simple, commonly used, and has been an integrated feature
of XML since its inception.

DTD’s allow one to specify:

• The elements and entities that can appear in a document.

• What the attributes of the elements are.

• The relationship between different elements including the order of
appearance and how they are nested.

We illustrate DTD’s by giving an example DTD for a gazetteer format,
which validates the XML document on slide II:14.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 26 / 117

Example DTD

<!ELEMENT Gazetteer (Country+)>

<!ELEMENT Country (Name,Population,Capital,Region*)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Population (#PCDATA)>

<!ELEMENT Capital (#PCDATA)>

<!ELEMENT Region (Name,Feature*)>

<!ELEMENT Feature (#PCDATA)>

<!ATTLIST Feature type CDATA #REQUIRED>

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 27 / 117

Understanding the example DTD

<!ELEMENT Gazetteer (Country+)>

This states that the Gazetteer element consists of one or more
Country elements.

<!ELEMENT Country (Name,Population,Capital,Region*)>

This states that a Country element consists of: one Name element,
followed by one Population element, followed by one Capital
element, followed by zero or more Region elements.

<!ELEMENT Name (#PCDATA)>

This states that the Name element contains text. The keyword #PCDATA
abbreviates “parsed character data”.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 28 / 117

<!ELEMENT Region (Name,Feature*)>

This states that a Region element consists of: one Name, followed by zero
or more Feature elements.

<!ELEMENT Feature (#PCDATA)>

This states that the Feature element has text content.

<!ATTLIST Feature type CDATA #REQUIRED>

This states that the Feature element has an attribute type, and that the
value of the attribute should be a text string (CDATA abbreviates “character
data”). Moreover, it is required that every Feature element in the
document must assign a value to the type attribute.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 29 / 117

General format of element declarations

An element declaration has the structure:

<!ELEMENT elementName (contentType)>

There are four possible content types:

1. EMPTY indicating that the element has no content, i.e. it is an empty
element as defined on slide II:16.

2. ANY indicating that any content is permitted.

Nevertheless elements that appear within the element content must
themselves be declared by corresponding element declarations.

3. #PCDATA indicating text content.

(In fact this is an instance of a more general mixed content format,
which we shall not consider further.)

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 30 / 117

4. A regular expression of element names.

Regular expressions were introduced in Inf1 Computation and Logic.

DTD’s make use of the following format for regular expressions.

• Any element name is a regular expression.

(The element names are the alphabet for the regular expressions.)

• exp1, exp2 : first exp1 then exp2 in sequence.

• exp* : zero or more occurrences of exp.

• exp? : zero or one occurrences of exp.

• exp+ : one or more occurrences of exp.

• exp1|exp2 : either exp1 or exp2.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 31 / 117

General format of attribute declarations

The attributes of an element are declared separately to the element
declaration. The general format is:

<!ATTLIST elementName (attName attType default)+>

This declares a list of at least one attribute for the element elementName.

For each entry in the list:

• attName is the attribute name

• attType is a type for the value of the attribute.

• default specifies whether the attribute is required or optional, and
may specify a default value for the attribute.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 32 / 117

We shall consider only the following attribute types:

• String type: CDATA means that the attribute may have any text string as
its value.

• Enumerated type: (s1 | s2 |...| sn) means that the attribute
must take one of the strings s1, s2, ..., sn as its value.

And the following default options.

• Required: #REQUIRED means that the attribute must be explicitly
assigned a value in every start tag for the element.

• Optional: #IMPLIED means it is optional whether a value is assigned
to the attribute or not.

• Default: A fixed string can be specified as the default value for the
attribute to take if no explicit value is given in the element’s start tag.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 33 / 117

A variation on the example

Consider replacing the attribute declaration in the example DTD with the
following declaration.

<!ATTLIST Feature type (Mountain|Lake|River) "Mountain">

With this new (but not with the original) declaration:

<Feature>Ben Nevis</Feature>

would be a valid Feature element. The type attribute would be given
the default (and correct) default value Mountain.

The element below is not valid with respect to the new DTD (although it is
valid for the original DTD)

<Feature type="Castle">Eilean Donan</Feature>

because Castle is not one of the specified values for type.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 34 / 117

Document type declaration

A document type declaration can appear in an XML document between the
XML declaration and the root element. It links the XML document to a
DTD schema intended to specify the structure of the document.

The usual format of a document type declaration is:

<!DOCTYPE rootName SYSTEM "URI">

where rootName is the name of the root element, and URI is the Uniform
Resource Indicator of the intended DTD.

An alternative (illustrated on the next slide) is to include the DTD within the
XML document itself, using an internal declaration

<!DOCTYPE rootName [DTD]>

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 35 / 117

Example internal document type declaration

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Gazetteer [

<!ELEMENT Gazetteer (Country+)>

<!ELEMENT Country (Name,Population,Capital,Region*)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Population (#PCDATA)>

<!ELEMENT Capital (#PCDATA)>

<!ELEMENT Region (Name,Feature*)>

<!ELEMENT Feature (#PCDATA)>

<!ATTLIST Feature type CDATA #REQUIRED>

]>

<Gazetteer>...</Gazetteer>

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 36 / 117

Limitations of DTD’s

One of the strengths of the DTD mechanism is its essential simplicity.

However, it is inexpressive in several important ways, and this severely
limits its usefulness. For example, three weaknesses are:

• Elements and attributes cannot be assigned useful types.

• It is impossible to place constraints on data values.

• There are restrictions on how character data and elements can be
combined (they can only be combined as mixed content), and there are
also undesirable technical restrictions on the forms of regular
expression allowed when declaring the structure of elements.

These issues and others have been dealt with through the development of
more powerful, but more complex, XML format languages, such as XML
Schema (which lie beyond the scope of Data & Analysis.)

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 37 / 117

Publishing relational data as XML

A common application of XML is as a format for publishing data from
relational databases.

The benefit of XML for this is that its simple text format makes the data
easily readable and transferable across platforms.

The generality and flexibility of the XML format means that there are many
ways to translate relational data into XML.

We illustrate one simple approach using example data from previous
lectures (cf. slide I:99).

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 38 / 117

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE UniversityData [

<!ELEMENT UniversityData (Students,Courses,Takes)>
<!ELEMENT Students (Student*)>
<!ELEMENT Student (mn,name,age,email)>
<!ELEMENT Courses (C*)>
<!ELEMENT C (code,name,year)>
<!ELEMENT Takes (T*)>
<!ELEMENT T (mn,name,mark)>
<!ELEMENT mn (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT code (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT mark (#PCDATA)>

]>

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 39 / 117

<UniversityData>
<Students>
<Student> <mn>s0456782</mn> <name>John</name>
<age>18</age> <email>john@inf</email> </Student>

<Student> <mn>s0412375</mn> <name>Mary</name>
<age>18</age> <email>mary@inf</email> </Student>

<Student> <mn>s0378435</mn> <name>Helen</name>
<age>20</age> <email>helen@phys</email> </Student>

<Student> <mn>s0189034</mn> <name>Peter</name>
<age>22</age> <email>peter@math</email> </Student>

</Students>
<Courses>
<C><code>inf1</code><name>Informatics 1</name><year>1</year></C>
<C><code>math1</code><name>Mathematics 1</name><year>1</year></C>

</Courses>
<Takes>
<T><mn>s0412375</mn><code>inf1</code><mark>80</mark></T>
<T><mn>s0378435</mn><code>math1</code><mark>70</mark></T>

</Takes>
</UniversityData>

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 40 / 117

Efficiency

Relational database systems are optimised for storage efficiency.

As we have seen, the XML version of relational data is extremely verbose.

Nevertheless, XML can still be stored efficiently using data compression
(which can be optimised for XML).

Furthermore, once published XML data has been downloaded, it can be
converted back to relational data so it can be stored efficiently in a local
database system.

Converting XML to back to relational data has the benefit of enabling the
data to be queried ising relational database technology (i.e., SQL).

An interesting alternative is to apply newer technology for directly querying
XML.

Part II: Semistructured Data II.2: Structuring XML

Inf1, Data & Analysis, 2010 II: 41 / 117

Part II — Semistructured Data

XML:

II.1 Semistructured data and XML

II.2 Structuring XML

II.3 Navigating XML using XPath

Corpora:

II.4 Introduction to corpora

II.5 Querying a corpus

Recommended reading:

§§3.1–3.4 of [XWT]

pp. 948–949 of [DMS] (superficial coverage only)

On-line XPath tutorial: http://www.w3schools.com/xpath/

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 42 / 117

How do we extract data from an XML document?

Since an XML document is a text document, one option is to use methods
based on text search.

But this ignores the element structure of the document.

A better alternative is to use a dedicated language for forming queries based
on the tree structure of an XML document

This has many uses, for example:

• Performing relational-database-type queries directly on data published
as XML

• Extracting annotated content from marked-up text documents

• All queries that exploit the tree structure of XML

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 43 / 117

XQuery and XPath

XQuery is a powerful declarative query language for extracting information
from XML documents.

However, the XQuery language is too complex for this course. (See [XWT]
for further information.)

XPath is a sublanguage of XQuery, used specifically for navigating XML
documents using path expressions.

XPath can be viewed as a rudimentary query language in its own right.

It is also an important component of many XML application languages
other than XQuery (e.g., XML Schema, XSLT, XLink, XPointer).

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 44 / 117

Location paths

A location path (a.k.a. path expression) retrieves a set of nodes from an
XML document tree.

• The location path describes a set of possible paths from the root of the
tree.

• The set of nodes retrieved is the set of all nodes reached as final
destinations of the described paths.

• This set of nodes is returned as a list of nodes (without duplicates)
sorted in document order (the order in which the nodes appear in the
XML document)

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 45 / 117

Document order Siblings of A

Ancestors of A Descendants of A

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 46 / 117

Example location paths

The next few slides illustrate a selection of location paths. Each is given
twice: above using the full XPath syntax, and below using a convenient
abbreviated syntax.

In each case, the retrieved nodes are highlighted in red. These nodes will be
returned as a list in document order.

Paths are built up step-by-step as the location path is read from left-to-right.

Each path is constructed by a context node that travels over the tree,
according to certain rules, depending on the continuation of the location
path expression.

The slash / at the start of a location path indicates that the starting position
for the context node is the root node.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 47 / 117

/child::Gazetteer

/Gazetteer

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 48 / 117

/child::Gazetteer/child::Country

/Gazetteer/Country

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 49 / 117

/child::Gazetteer/child::Country/child::Region

/Gazetteer/Country/Region

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 50 / 117

/descendant::Region

//Region

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 51 / 117

/descendant::Region/child::*
//Region/*

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 52 / 117

/descendant::Region/descendant::*
//Region//*

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 53 / 117

/descendant::Region/descendant::node()

//Region//node()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 54 / 117

/descendant::Region/descendant::text()

//Region//text()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 55 / 117

/descendant::Feature/attribute::type

//Feature/@type

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 56 / 117

General unabbreviated syntax of location paths

A location path is a sequence of location steps separated by a / character.

A location step has the form

axis::nodeTest predicate*

• The axis tells the context node which way to move.

• The node test selects nodes of an appropriate type from the tree.

• The optional predicates supply conditions that need to be satisfied for
the path to be allowed to count towards the result.

N.B., the previous examples contained only axes and node tests.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 57 / 117

A selection of axes

• child : the children of the context node (remember, an attribute node
does not count as a child node)

• descendant : the descendants of the context node (again, an attribute
node does not count as a descendant).

• parent : the unique parent of the context node (where the context
node must not be the root node).

• attribute : all attribute nodes of the context node (which must be
an element node).

• self : the context node itself (this is useful in connection with
abbreviations).

• descendant-or-self : the context node together with its
descendants.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 58 / 117

A selection of node tests

Node tests filter the nodes selected by the current axis according to the type
of node.

• text() : selects only character data nodes.

• node() : selects all nodes.

• * : if the axis is attribute then all attribute nodes are selected; for
any other axis, all element nodes are selected.

• name : selects the nodes with the given name.

The names used for node tests in the earlier examples were:
Gazetteer, Country, Region, Feature and type.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 59 / 117

Predicates

The node test in a location step may be followed by zero, one or several
predicates each given by an expression enclosed in square brackets.

Common examples of predicates are:

• [locationPath]

This selects only those nodes for which there exists a continuation path
(from the current node) matching locationPath.

• [locationPath =value]

Selects those nodes for which there exists a continuation path matching
locationPath such that the final node of the path is equal to
value.

The full syntax of XPath predicate expressions is rather powerful, but
beyond the scope of the course.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 60 / 117

/descendant::Feature[attribute::type=’Mountain’]

//Feature[@type=’Mountain’]

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 61 / 117

/descendant::Feature[attribute::type=’Mountain’]/child::text()

//Feature[@type=’Mountain’]/text()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 62 / 117

//Feature[@type=’Mountain’]/../Name/text()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 63 / 117

XPath as a query language

The previous examples illustrate XPath as a rudimentary query language.

The queries formulated are:

• Slide II: 60 : Find every feature element for which the feature is a
mountain.

• Slide II: 61 : Find the name of every mountain.

• Slide II: 62 : Find the name of every region in which there is a
mountain.

The last query was given only in abbreviated form. The full version is more
cumbersome:

/descendant::Feature[attribute::type=’Mountain’]/

parent::*/child::Name/child::text()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 64 / 117

Abbreviated syntax

The abbreviated syntax is more economical and often (but not always!)
more intuitive.

The XPath abbreviations are:

• The syntax child:: may be omitted from a location step altogether.
(The child axis is chosen as default.)

• The syntax @ is an abbreviation for: attribute::

• The syntax // is an abbreviation for:

/descendant-or-self::node()/

• The syntax .. is an abbreviation for: parent::node()

• The syntax . is an abbreviation for: self::node()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 65 / 117

Queries and alternatives

Consider again the last query above:

Find the name of every region in which there is a mountain.

An alternative location path for this is:

//Region[Feature/@type=’Mountain’]/Name/text()

Similarly, consider:

Find the name of countries containing a feature called Everest.

Two queries for this are:

//Feature[text()=’Everest’]/../../Name/text()

//Country[.//Feature/text()=’Everest’]/Name/text()

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 66 / 117

One subtle point

A subtle point with XPath is illustrated by the second solution above to:

Find the name of countries containing a feature called Everest.

While the given query (repeated below) is correct,

//Country[.//Feature/text()=’Everest’]/Name/text()

the following (natural) attempt would be incorrect:

//Country[//Feature/text()=’Everest’]/Name/text()

The problem is that the location path //Feature/text() starts with a /
character, and this means that XPath interprets this path as starting at the
root node, whereas the path needs to start at the current node.

The omission of a necessary ‘.’ character at the start of a predicate
expression is a common source of errors in XPath.

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 67 / 117

More on XPath

In practice, when using XPath, one often needs to prefix the location path
with a pointer to the given XML document; e.g.,

doc("gazetter.xml")//Feature[@type=’Mountain’]/text()

Other features in XPath include: navigation based on document order,
position and size of context, treatment of namespaces, a rich language of
expressions.

For full details on XPath and XQuery see the W3C specification:

http://www.w3.org/TR/xpath

A tutorial can be found at:

http://www.w3schools.com/xpath/

Part II: Semistructured Data II.3: Navigating XML using XPath

Inf1, Data & Analysis, 2010 II: 68 / 117

Part II — Semistructured Data

XML:

II.1 Semistructured data and XML

II.2 Structuring XML

II.3 Navigating XML using XPath

Corpora:

II.4 Introduction to corpora

II.5 Querying a corpus

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 69 / 117

Recommended reading

The recommended reading for the material on corpora is:

[CL] Corpus Linguistics

Tony McEnery & Andrew Wilson

Edinburgh University Press,

2nd Edition, 2001

This book is written for a linguistics audience.

Nevertheless, Chapter 2, from the start of chapter to end of §2.2.2, will
provide excellent background for the material covered in the lectures.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 70 / 117

Natural language as data

Written or spoken natural language has plenty of internal structure: it
consists of words, has phrase and sentence structure, etc.

Nevertheless, on a computer, it is represented as a text file: simply a
sequence of characters.

This is an example of unstructured data: the data format itself has no
structure imposed on it (other than the sequencing of characters).

Often, however, it is useful to annotate text by marking it up with additional
information (e.g. linguistic information, semantic information).

Such marked-up text, is a widespread and very useful form of
semistructured data.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 71 / 117

What is a corpus?

The word corpus (plural corpora) is Latin for “body”.

It is used in (both computational and theoretical) linguistics as a word to
describe a body of text, in particular a body of written or spoken text.

In practice, a corpus is a body of written or spoken text, from a particular
language variety, that meets the following criteria.

1. sampling and representativeness;

2. finite size;

3. machine-readable form;

4. a standard reference.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 72 / 117

Sampling and representativeness

In linguistics, corpora provide data for empirical linguistics

That is, corpora provide data that is used to investigate the nature of
linguisitic practice (i.e., of real-world language usage), for the chosen
language variety

For obvious practical reasons, a corpus can only contain a sample of
instances of language usage (albeit a potentially large sample)

For such a sample to be useful for linguistic analysis, it must be chosen to
be representative of the kind of language practice being analysed.

For example, the complete works of Shakespeare would not provide a
representative sample for Elizabethan English.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 73 / 117

Finiteness

Furthermore, corpora usually have a fixed finite size. It is decided at the
outset how the language variety is to be sampled and how much data to
include. An appropriate sample of data is then compiled, and the corpus
content is fixed.

N.B. Monitor corpora (which are beyond the scope of this course) are an
exception to the fixed size rule.

While the finite size rule for a corpus is obvious, it contrasts with theoretical
lingustics, where languages are studied using grammars (e.g. context-free
grammars) that potentially generate infinitely many sentences.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 74 / 117

Machine readability

Historically, the word “corpus” was used to refer to a body of printed text.

Nowadays, corpora are almost universally machine (i.e. computer) readable.
(Since this is an Informatics course, we are anyway only interested in such
corpora.)

Machine-readable corpora have several obvious advantages over other
forms:

• They can be huge in size (billions of words)

• They can be efficiently searched

• They can be easily (and sometimes automatically) annotated with
additional useful information

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 75 / 117

Standard reference

A corpus is often a standard reference for the language variety it represents.

For this, the corpus has to be widely available to researchers.

Having a corpus as a standard reference allows competing theories about the
language variety to be compared against each other on the same sample data

The usefulness of a corpus as a standard reference depends upon all the
preceeding three features of corpora: representativeness, fixed finite size
and machine readability.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 76 / 117

Summarizing

In practice, a corpus is generally a widely available fixed-sized body of
machine-readable text, sampled in order to be maximally representable of
the language variety it represents.

Note, however, not every corpus will have all of these characteristics.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 77 / 117

Some prominent English language corpora

• The Brown Corpus of American English was compiled at Brown
University and published in 1967. It contains around 1,000,000 words.

• The British National Corpus (BNC), published mid 1990’s, is a
100,000,000-word text corpus intended to representative of written and
spoken British English from the late 20th century.

• The American National Corpus (ANC) is an ongoing project to create
an electronic text corpus of written and spoken American English since
1990. The aim is to create a 100,000,000-word corpus.

The first release, made available (to subscribers only) in 2003, contains
11,000,000 words and was provided in XML format.

• The Oxford English Corpus (OEC) is an English corpus used by the
makers of the Oxford English Dictionary. It is the largest text corpus of
its kind, containing over 2,000,000,000 words. It is in XML format.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 78 / 117

Two forms of corpus

There are two forms of corpus: unannotated, i.e. consisting of just the raw
language data, and annotated.

Unannotated corpora are examples of unstructured data.

Annotated corpora are examples of semistructured data.

The four English language corpora on slide II: 77 are all annotated.

Annotations are extremely useful for many purposes. They will play an
important role in future lectures.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 79 / 117

Building a corpus

To build a corpus we need to perform two tasks:

• Collect corpus data — this involves balancing and sampling

• In the case of an annotated corpus, add meta-information —- this is
called annotation

Balancing ensures that the linguistic content of a corpus represents the full
variety of the language sources that the corpus is intended to provide a
reference for. For example, a balanced text corpus includes texts from many
diffeerent types of source; e.g., books, newspapers, magazines, letters, etc.

Sampling ensures that the material is representative of the types of source.
For example, sampling from newspaper text: select texts randomly from
different newspapers, different issues, different sections of each newspaper.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 80 / 117

Balancing

Things to take into account when balancing:

• language type: may wish to include samples from some or all of:

– edited text (e.g., articles, books, newswire);

– spontaneous text (e.g., email, Usenet news, letters);

– spontaneous speech (e.g., conversations, dialogs);

– scripted speech (e.g., formal speeches).

• genre: fine-grained type of material (e.g., 18th century novels,
scientific articles, movie reviews, parliamentary debates)

• domain: what the material is about (e.g., crime, travel, biology, law);

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 81 / 117

Examples of balanced corpora

Brown Corpus: a balanced corpus of written American English:

• one of the earliest machine-readable corpora;

• developed by Francis and Kucera at Brown in early 1960’s;

• 1M words of American English texts printed in 1961;

• sampled from 15 different genres.

British National Corpus: large, balanced corpus of British English.

• one of the main reference corpora for English today;

• 90M words text; 10M words speech;

• text part sampled from newspapers, magazines, books, letters, school
and university essays;

• speech recorded from volunteers balanced by age, region, and social
class; also meetings, radio shows, phone-ins, etc.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 82 / 117

Comparison of some standard corpora

Corpus Size Genre Modality Language

Brown Corpus 1M balanced text American English

British National Corpus 100M balanced text/speech British English

Penn Treebank 1M news text American English

Broadcast News Corpus 300k news speech 7 languages

MapTask Corpus 147k dialogue speech British English

CallHome Corpus 50k dialogue speech 6 languages

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 83 / 117

Pre-processing and annotation

Raw data from a linguistic source can’t be exploited directly. We first have
to perform:

• pre-processing: identify the basic units in the corpus:

– tokenization;

– sentence boundary detection;

• annotation: add task-specific information:

– parts of speech;

– syntactic structure;

– dialogue structure, prosody, etc.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 84 / 117

Tokenization

Tokenization: divide the raw textual data into tokens (words, numbers,
punctuation marks).

Word: a continuous string of alphanumeric characters delineated by
whitespace (space, tab, newline).

Example: potentially difficult cases:

• amazon.com, Micro$oft

• John’s, isn’t, rock’n’roll

• child-as-required-yuppie-possession

(As in: “The idea of a child-as-required-yuppie-possession must be
motivating them.”)

• cul de sac

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 85 / 117

Sentence Boundary Detection

Sentence boundary detection: identify the start and end of sentences.

Sentence: string of words ending in a full stop, question mark or
exclamation mark.

This is correct 90% of the time.

Example: potentially difficult cases:

• Dr. Foster went to Gloucester.

• He said “rubbish!”.

• He lost cash on lastminute.com.

The detection of word and sentence boundaries is particularly difficult for
spoken data.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 86 / 117

Corpus Annotation

Annotation: adds information that is not explicit in the data itself, increases
its usefulness (often application-specific).

Annotation scheme: basis for annotation, consists of a tag set and
annotation guidelines.

Tag set: is an inventory of labels for markup.

Annotation guidelines: tell annotators (domain experts) how tag set is to be
applied; ensure consistency across different annotators.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 87 / 117

Part-of-speech (POS) annotation

Part-of-speech (POS) tagging is the most basic kind of linguistic annotation.

Each linguistic token is assigned a code indicating its part of speech, i.e.,
basic grammatical status.

Examples of POS information:

• singular common noun;

• comparative adjective;

• past participle.

POS tagging forms a basic first step in the disambiguation of homographs.

E.g., it distinguishes between the verb “boot” and the noun “boot”.

But it does not distiguish between “boot” meaning “kick” and “boot” as in
“boot a computer”, both of which are transitive verbs.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 88 / 117

Example POS tag sets

• CLAWS tag set (used for BNC): 62 tags;
• Brown tag set (used for Brown corpus): 87 tags:
• Penn tag set (used for the Penn Treebank): 45 tags.

Category Examples CLAWS Brown Penn

Adjective happy, bad AJ0 JJ JJ

Adverb often, badly PNI CD CD

Determiner this, each DT0 DT DT

Noun aircraft, data NN0 NN NN

Noun singular woman, book NN1 NN NN

Noun plural women, books NN2 NN NN

Noun proper singular London, Michael NP0 NP NNP

Noun proper plural Australians, NP0 NPS NNPS

Methodists

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 89 / 117

POS Tagging

Idea: Automate POS tagging: look up the POS of a word in a dictionary.

Problem: POS ambiguity: words can have several possible POS’s; e.g.:

Time flies like an arrow. (1)

time: singular noun or a verb;
flies: plural noun or a verb;
like: singular noun, verb, preposition.

Combinatorial explosion: (1) can be assigned 2 × 2 × 3 = 12 different
POS sequences.

Need to take sentential context into account to get POS right! A successful

approach to this is probabilistic POS tagging which can achieve an
accuracy of 96–98%.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 90 / 117

Use of markup languages

An important general application of markup languages, such as XML, is to
separate data from metadata.

In a corpus, this serves to keep different types of information apart;

• Data is just the raw data.

In a corpus this is the text itself.

• Metadata is data about the data.

In a corpus this is the various annotations.

Nowadays, XML is the most widely used markup language for corpora.

The example on the next slide is taken from the BNC XML Edition, which
was released only in 2007.
(The previous BNC World Edition was formatted in SGML.)

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 91 / 117

Example from the BNC XML Edition
<wtext type="FICTION">
<div level="1">
<head> <s n="1">

<w c5="NN1" hw="chapter" pos="SUBST">CHAPTER </w>
<w c5="CRD" hw="1" pos="ADJ">1</w>

</s> </head>
<p> <s n="2">

<c c5="PUQ"> </c>
<w c5="CJC" hw="but" pos="CONJ">But</w>
<c c5="PUN">,</c> <c c5="PUQ"> </c>
<w c5="VVD" hw="say" pos="VERB">said </w>
<w c5="NP0" hw="owen" pos="SUBST">Owen</w>
<c c5="PUN">,</c> <c c5="PUQ"> </c>
<w c5="AVQ" hw="where" pos="ADV">where </w>
<w c5="VBZ" hw="be" pos="VERB">is </w>
<w c5="AT0" hw="the" pos="ART">the </w>
<w c5="NN1" hw="body" pos="SUBST">body</w>
<c c5="PUN">?</c> <c c5="PUQ"> </c>

</s> </p>
....
</div>

</wtext>

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 92 / 117

Aspects of this example

The example is the opening text of J10, a novel by Michael Pearce.

Some aspects of the tagging:

• The wtext element stands for written text. The attribute type
indicates the genre.

• The head element tags a portion of header text (in this case a chapter
heading).

• The s element tags sentences. (N.B., a chapter heading counts as a
sentence.) Sentences are numbered via the attribute n.

• The w element tags words. The attribute pos is a POS tag, with more
detailed POS information given by the c5 attribute, which contains the
CLAWS code. The attribute hw represents the root form of the word
(e.g., the root form of “said” is “say”).

• The c element tags punctuation.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 93 / 117

Syntactic annotation (parsing)

Syntactic annotation: information about the structure of sentences.
Prerequisite for computing meaning.

Linguists use phrase markers to indicates which parts of a sentence belong
together:

• noun phrase (NP): noun and its adjectives, determiners, etc.

• verb phrase (VP): verb and its objects;

• prepositional phrase (PP): preposition and its NP;

• sentence (S): VP and its subject.

Phrase markers group hierarchically in a syntax tree.

Syntactic annotation can be automated. Accuracy: around 90%.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 94 / 117

Example syntax tree

Sentence from the Penn Treebank corpus:

S

NP

PRP

They

VP

VB

saw

NP

NP

DT

the

NN

president

PP

IN

of

NP

DT

the

NN

company

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 95 / 117

The same syntax tree in XML:

<s>
<np><w pos="PRP">They</w></np>
<vp><w pos="VB">saw</w>
<np>
<np><w pos="DT">the</w> <w pos="NN">president</w></np>
<pp><w pos="NN">of</w>
<np><w pos="DT">the</w> <w pos="NN">company</w></np>

</pp>
</np>

</vp>
</s>

Note the conventions used in the above document: phrase markers are
represented as elements; whereas POS tags are given as attribute values.

N.B. The tree on the previous slide is not the XML element tree generated
by this document.

Part II: Semistructured Data II.4: Introduction to Corpora

Inf1, Data & Analysis, 2010 II: 96 / 117

Part II — Semistructured Data

XML:

II.1 Semistructured data and XML

II.2 Structuring XML

II.3 Navigating XML using XPath

Corpora:

II.4 Introduction to corpora

II.5 Querying a corpus

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 97 / 117

Applications of corpora

Answering empirical questions in linguistics and cognitive science:

• corpora can be analyzed using statistical tools;

• hypotheses about language processing and language acquisition can be
tested;

• new facts about language structure can be discovered.

Engineering natural-language systems in AI and computer science:

• corpora represent the data that language processing system have to
handle;

• algorithms exist to extract regularities from corpus data;

• text-based or speech-based computer applications can learn
automatically from corpus data.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 98 / 117

Extracting data from corpora

To do something useful with corpus data and its annotation, we need to be
able to query the corpus to extract the data and information we want.

This lecture introduces:

• The basic notion of a concordance in a corpus.

• Statistics are useful for linguistic questions or NLP applications, such
as frequency and relative frequency.

• Unigrams, bigrams and n-grams.

• The linguistic notion of a collocation.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 99 / 117

Concordances

Concordance: all occurrences of a given word, displayed in context.

More generally, one looks for all occurrences of matches for a given query
expression.

• generated by concordance programs based on a user keyword;

• keyword (search query) can specify word, annotation (POS, etc.) or
more complex information (e.g.,using regular expressions);

• output displayed as keyword in context: matched keyword in the
middle of the line, predefined context to left and right.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 100 / 117

Example

A concordance for all forms of the word “remember” in a corpus of the
complete works of Dickens.

’s cellar . Scrooge then <remembered> to have heard that ghost

, for your own sake , you <remember> what has passed between

e-quarters more , when he <remembered> , on a sudden , that the

corroborated everything , <remembered> everything , enjoyed eve

urned from them , that he <remembered> the Ghost , and became c

ht be pleasant to them to <remember> upon Christmas Day , who

its festivities ; and had <remembered> those he cared for at a

wn that they delighted to <remember> him . It was a great sur

ke ceased to vibrate , he <remembered> the prediction of old Ja

as present myself , and I <remember> to have felt quite uncom

...

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 101 / 117

Example

A concordance for all occurrences of “Holmes” in a corpus that consists of
the Arthur Conan Doyle story A Case of Identity.

My dear fellow.’’ said Sherlock <Holmes> as we sat on either

a realistic efect,’’ remarked <Holmes>. ‘‘This is wanting in the

said <Holmes>, taking the paper and glancing his eye down

‘‘I have seen those symptoms before,’’ said <Holmes>, throwing

merchant-man behind a tiny pilot boat. Sherlock <Holmes> welcomed

You’ve heard about me, Mr. <Holmes>,’’ she cried, ‘‘else how

. . .

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 102 / 117

Frequencies

Frequency information obtained from corpora is often useful for answering
scientific or engineering questions.

Token count N : number of tokens (words, punctuation marks, etc.) in a
corpus (i.e., size of the corpus).

Type count: number of different tokens in a corpus.

Absolute frequency f(t) of a type t: number of tokens of type t in a corpus.

Relative frequency of a type t: absolute frequency of t normalized by the
token count, i.e., f(t)/N .

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 103 / 117

Frequencies (example)

The British National Corpus (BNC) is an important reference.

Let’s compare some counts from the BNC with counts from our sample
corpus A Case of Identity

BNC A Case of Identity

Token count N 100,000,000 7,006

Type count 636,397 1,621

f (Holmes) 890 46

f (Sherlock) 209 7

f (Holmes)/N .0000089 .0066

f (Sherlock)/N .00000209 .000999

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 104 / 117

Unigrams

We can now ask questions such as: what are the most frequent words in a
corpus?

• Count absolute frequencies of all word types in the corpus;

• tabulate them in an ordered list;

• results: list of unigram frequencies (frequencies of individual words).

The next slide compares unigram frequencies for BNC and A Case of
Identity.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 105 / 117

Unigrams (example)

BNC A Case of Identity

6,184,914 the 350 the

3,997,762 be 212 and

2,941,372 of 189 to

2,125,397 a 167 of

1,812,161 in 163 a

1,372,253 have 158 I

1,088,577 it 132 that

917,292 to 117 it

N.B. The article “the” is the most frequent word in both corpora;
prepositions like “of” and “to” appear in both lists; etc.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 106 / 117

n-grams

The notion of unigram can be generalized:

• bigrams — pairs of adjacent words

• trigrams — triples of adjacent words

• n-grams — n-tuples of adjacent words.

As the value of n increases, the units become more linguistically
meaningful.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 107 / 117

n-grams (example)

Compute the most frequent n-grams in A Case of Identity, for n = 2, 3, 4.

bigrams trigrams 4-grams

40 of the 5 there was no 2 very morning of the

23 in the 5 Mr. Hosmer Angel 2 use of the money

21 to the 4 to say that 2 the very morning of

21 that I 4 that it was 2 the use of the

20 at the 4 that it is 2 the King of Bohemia

N.B. n-gram frequencies get smaller with increasing n. As more word
combinations become possible, there is increased data sparseness.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 108 / 117

Example

A concordance for all occurrences of bigrams in the Dickens corpus in
which the second word is “tea” and the first is an adjective.

This query exploits the POS tagging of the corpus to search for adjectives.

now , notwithstanding the <hot tea> they had given me before
.’ ’ Shall I put a little <more tea> in the pot afore I go ,
o moisten a box-full with <cold tea> , stir it up on a piece
tween eating , drinking , <hot tea> , devilled grill , muffi
e , handed round a little <stronger tea> . The harp was there ; t
e so repentant over their <early tea> , at home , that by eigh
rs. Sparsit took a little <more tea> ; and , as she bent her
s illness ! Dry toast and <warm tea> offered him every night
of robing , after which , <strong tea> and brandy were administ
rsty . You may give him a <little tea> , ma’am , and some dry t

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 109 / 117

Collocations

Collocation: a sequence of words that occurs ‘atypically often’ in language
usage

Examples:

• run amok: the verb “run” can occur on its own, but “amok” can’t.

• strong tea: sounds much better than “powerful tea” although the literal
meanings are much the same.

• Phrasal verbs such as make up or make off or make out (but not, for
example, “make in”).

• rancid butter, bitter sweet, over and above, etc.

N.B. The inverted commas around ‘atypically often’ are because we shall
eventually need statistical ideas to make this precise.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 110 / 117

Identifying collocations

Task: automatically identify collocations in a large corpus.

For example collocations with the word tea (see III: 108).

• strong tea occurs in the corpus.

This is a collocation.

• powerful tea, in fact, does not.

• However, more tea and little tea also occur in the corpus.

These are not collocations. These word sequences do not occur with an
atypically common frequency.

Problem: How do we detect when a bigram (or n-gram) is a collocation?

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 111 / 117

Looking at the data

The next slide lists the frequencies of the most common bigrams, in the
Dickens Corpus, in which the first word is “strong”.

For comparison, the frequencies of the most common bigrams in which the
first word is “powerful” are also given.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 112 / 117

strong and 31 powerful effect 3

enough 16 sight 3

in 15 enough 3

man 14 mind 3

emphasis 11 for 3

desire 10 and 3

upon 10 with 3

interest 8 enchanter 2

a 8 displeasure 2

as 8 motives 2

inclination 7 impulse 2

tide 7 struggle 2

beer 7 grasp 2

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 113 / 117

Filtering collocations

The bigram table shows:

• Neither strong tea nor powerful tea are frequent enough to make it into
the top 13.

• Potential collocations for strong: e.g., strong desire, strong inclination,
and strong beer;

• Potential collocations for powerful: e.g., powerful effect, powerful
motives, and powerful struggle;

• Problem: The bigrams strong and, strong enough, powerful for, are
highly frequent. These are not collocations.

• To distinguish collocations from non-collocations, we need to filter out
‘noise’.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 114 / 117

The need for statistics

Problem: Words like for and and are highly frequent on their own: they
occur with tea by chance.

Solution: use statistical testing to detect when the frequency of a bigram is
atypically high given the frequencies of its constituant words.

In general, statistical tools offer powerful methods for the analysis of all
types of data. In particular, they provide the principal approach to the
quantitative (and qualitative) analysis of unstructured data.

We shall return to the problem of finding collocations in Part III of the
course, when we have appropriate statistical tools at our disposal.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 115 / 117

Searching for concordances

The concordances in this lecture were produced using a dedicated program
for searching for concordances, the Corpus Query Processor (CQP).

CQP is query engine which searches corpora based on user queries over
words, parts of speech, or other markup.

It uses regular expressions to formulate queries. This makes the CQP query
language very powerful (N.B. This is the second time we have found an
application for regular expressions in Data & Analysis.)

An alternative to using a dedicated concordance program is to use XML
query technology (XPath and XQuery) to search any corpus implemented in
XML.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 116 / 117

Corpora in Informatics

Corpora are used extensively in two areas of informatics:

• Natural Language Processing (NLP) builds computer systems that
understand or produce text. Example applications that rely on corpus
data include:

– Summarization: take a text and compress it, i.e., produce an abstract
or summary. Example: Newsblaster.

– Machine Translation (MT): take a text in a source language and turn
it into a text in the target language. Example: Babel Fish.

• speech processing develops systems that understand or produce spoken
language.

The techniques applied rely on probability theory, information theory and
machine learning to extract statistical regularities from corpora.

Part II: Semistructured Data II.5: Querying a corpus

Inf1, Data & Analysis, 2010 II: 117 / 117

Example translation by AltaVista Babel Fish.

O, my love is like a red, red rose,
That is newly sprung in June.

Robert Burns (1759–1796)

English → Italian:

La O, il mio amore è come un rosso, colore rosso è aumentato,
che recentemente è balzato in giugno.

Italian → English:

Or, my love is like a red one, red color is increased,
than recently it is jumped in June.

Fortunately, Machine-translation research has made progress since Babel
Fish.

Part II: Semistructured Data II.5: Querying a corpus

