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Part I — Structured data

• For some application domains, data isinherently structured

– For instance, all students share common information

• In such domains, it makes sense to organise the data in a way that

directly maps to theirphysical properties, and to devise mechanisms to

access and manipulate data

• We will deal with two maindata representationmodels:

– Theentity-relationship (ER)model, and therelationalmodel

• Finally, we will deal with datamanipulationfor therelational model, in

particular:

– Relational algebra, theTuple-relational calculusand the query

languageSQL

Part I: Structured Data
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Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple relational calculus

I.5 The SQL query language
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Required reading

You are required to read Chapter 2 of:

[DMS] R. Ramakrishnan and J. Gehrke

Database Management Systems

McGraw-Hill, Third Edition, 2003.

In particular,§§ 2.1–2.5.
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Initial stages of database design

1. Requirements analysis.

Understand what data is to be stored in the database and what
operations are likely to be performed on it.

2. Conceptual design

Develop a high-level description of data to be stored and constraints
that hold over it.

This description is often given using the ER data model.

3. Logical design

Implement the conceptual design by mapping it to alogical data

representation. The outcome is alogical schema.

The implementation is often performed by translating the ER data
model into arelational database schema(see I.2).

Part I: Structured Data I.1: The ER data model



Inf1, Data & Analysis, 2010 I: 6 / 114

The ER data model

• What is it used for?

The ER model is a way to describeentities(for example, real-world

entities) and therelationshipsbetween them

• Why is it useful?

Because it maps to differentlogical data models, including the

relational model

• How is it used?

It is essentially a way to visualise data and their dependencies
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Entities and entity sets

Any distinguishable object (for example, in the real world) can be anentity

A collection of the same type of entities is anentity set

Entity sets are represented byboxes, labelled with the entity set’s name

Students

Matric.
number

name

email

Part I: Structured Data I.1: The ER data model



Inf1, Data & Analysis, 2010 I: 8 / 114

Attributes

Each entity of the same entity set has some characteristicattributes

Attributes are represented byovals, labelled with the attribute’s name,

connected to the entity set they belong to.

Students

Matric.
number

name

email
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Domains

Each attribute has adomainfrom which allowable values are derived

E.g.,Matric. numberis aninteger

nameandemailare40-character strings

Students

Matric.
number

name

email
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Keys

A keyis a minimal set of attributes whose values allow us to uniquely
identify an entity in an entity set

There may be more than one such minimal set, they are calledcandidate

keys

E.g., eitherMatric. numberor emailcan act as keys.

Students

Matric.
number

name

email
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Primary keys

If multiple candidate keys exist, we choose one and make it theprimary key.

The attributes occurring in the primary key areunderlinedin the ER

diagram

Students

Matric.
number

name

email
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Relationships and relationship sets

Relationshipsmodel associations between entities

Relations are grouped intorelationship setsof relationships between entities

from specified entity sets.

Relationship sets are represented asdiamondsin ER diagrams

Relationship may haveattributesof their own.

Students

mn
name

email

Courses

code
name

year

Takes

mark
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There is no bound on the number of entities participating in a relationship.

Correspondingly, there is no bound on the number of relationships an entity

can participate in

Students

mn
name

email

Courses

code
name

year

Takes

mark

Degrees

name

Majors_In Appears_In
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Instances

Entity instancesandrelationship instancesare what we obtain after

instantiating the attributes of an entity or a relationship

Examples

An entity instance from theStudentsentity set:

(123, Natassa, natassa@somewhere)

An entity instance from theCoursesentity set:

(inf1, Informatics 1, 1)

A relationship instance from theTakesrelationship set:

(123, Natassa, natassa@somewhere, inf1, Informatics 1, 1, 88)
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Key constraints

A key constraintcaptures identification connections between entities

participating in a relationship

Definition. SupposeR is a relationship betweenn entity sets,

E1, . . . , En. There is akey constrainton one of the entities,Ek, if,

however we instantiate the attributes ofEk, there is at most one relationship

instance participated in by the attribute instantiation.

Example.Students, directors of studies (DoS), and the relationship between

them (Directed-By)

• Given aStudentsinstance, we can determine theDirected-Byinstance

it appears in. That is, each student has a unique DoS.
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One-to-many and many-to-many relationships

A one-to-manyrelationshipR between entity setsEo andEm means that,

for each instanceem ∈ Em, there is at most one instanceeo ∈ Eo such

thateo andem appear together in some relationship instancer ∈ R.

More simply: each instanceeo ∈ Eo may be associated (inR) with many

instancesem ∈ Em, but each instanceem ∈ Em must be associated (in

R) with at most one instanceeo ∈ Eo.

If R is a binary relationship betweenEo andEm, then being one-to-many

is equivalent to there being a key contraint onEm.

A many-to-manyrelationshipR between entity setsEo andEm means that

there are no constraints on the number of times entity instanceseo ∈ Eo

andem ∈ Em may appear in relationship instancesr ∈ R.
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Examples

TheDirectedBy relationship between theStudentsandDoSentity sets is a

many-to-one relationship.

• Each student has a single DoS, but

• each DoS may have many students

TheTakesrelationship betweenStudentsandCoursesis a many-to-many

relationship

• Each student takes many different courses;

• Each course may be taken by many different students
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Participation constraints

Participation constraints capture the mode in which an entity participates in

a relationship.

Total participationon entity setE for relationshipR is declared when every

entity instancee ∈ E appears in at least one relationship instance ofR.

Partial participationon entity setE for relationshipR is declared when

there exist entitiese ∈ E that do not appear in instances ofR.
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Example

0459295
0482364
0423872
0403462

1190345
5690246
1295298

Students DoSsDirected_By

Total participation Partial participation

Students DoSDirected_By

Notation. A thick arrowfrom an entity to a relationship represents that the
entity both totally participates in the relationship and also satisfies a key
constraint.
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Weak entity sets

In certain cases, it is impossible to designate a primary key for entities of an

entity set.

Instead, the only way in which set participation can be declared is by

“borrowing” the key of another entity set

number capacity

Buildings

name address

Rooms Is_Located
_In
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Notation

Double linesfor weak entity and identifying relationship

Doubly underlined attributesof the weak entity set participating in the

composite key

The identifying relationshipis many-to-one and total.

number capacity

Buildings

name address

Rooms Is_Located
_In
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Weak entity set: Definition

• A weak entity setis an entity set for which a primary key consisting

only of its own attributes cannot be identified

• Thekeyis formed by a combination of its own attributes and the key

attributes from another entity set with which it has a relationship

• The entity set from which attributes are borrowed is called the

identifying owner

• The relationship between the weak entity set and its identifying owner

is called anidentifying relationship.

• The identifying relationship must be many-to-one and total.
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Hierarchical entities and inheritance

Subclasses(Full-time Students, Part-time Students) specialiseasuperclass

(Students) by inheritingattributes from the superclass.

Subclasses also have additional attributes of their own.

Students

mn
name

email

ISA
Full-time
Students

Part-time
Students

semester
load

part-time
load
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Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple relational calculus

I.5 The SQL query language

Required reading: Chapter 3 of [DMS],§§ 3.1,3.2,3.4,3.5
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History of relational model
• Therelational modelwas introduced in 1970 by Edgar F. Codd, a

British computer scientist working at IBM’s Almaden Research Center
in San Jose, California.

• IBM was initially slow to exploit the idea, but by the mid 1970’s IBM
was at the forefront of the commercial development of relational
database systems with its System R project, which included the
development and first implementation of SQL. (Codd was sidelined
from this project!)

• Around the same time, the relational model was developed and
implemented at UC Berkely (the Ingres project)

• Nowadays relational databases are a multi-billion pound industry.

• A major reason for the success of the relational model is its simplicity

• In 1981, Codd received the Turing Award for his pioneering work on
relational databases
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Building blocks

• The basic construct is arelation.

– It consists of aschemaand aninstance

– Theschemacan be thought of as the format of the relation

– A relation instanceis also known as atable

• A schemais a set of fields, which are (name, domain) pairs

– fieldsmay be referred to as attributes, or columns

– domainsare referred to as types

• The rows of a table are calledtuples(or records) and they are value

assignments from the specified domain for the fields of the table

• Thearity of a relation is its number of columns (fields)

• Thecardinalityof a table is its number of rows (tuples)
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Example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Schema

Fields (a.k.a. attributes, columns)

{Tuples
(a.k.a. records,

rows)
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Data definition in SQL

• SQL stands forStructured Query Language

• A special subset of SQL called theData Definition Language (DDL)is

used to declare table schemata

• Relations are calledtablesin SQL

• It is a typed language

– For simplicity, we will assume there are only three types: (i)

integer for integer numbers, (ii)real for real numbers (floating

point), and (iii)char( n) for a string of maximum lengthn
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General form of a DDL statement

create table table name( attribute name attribute type
[, attribute name attribute type]*
〈integrity constraints〉 )

Example 1

create table Students (
mn char(8),
name char(20),
age integer,
email char(15),
primary key (mn) )

Part I: Structured Data I.2: The relational model



Inf1, Data & Analysis, 2010 I: 30 / 114

The example defines theStudents table.

The last line implements aprimary key constraint, it declaresmnto be the

chosen primary key forStudents .

This constraint requires that theStudents table contains at most one row

with any givenmnvalue. This is enforced by the system.

Any attempt to insert a new row with anmnvalue that already exists in

some other row of the table will fail.

create table Students (
mn char(8),
name char(20),
age integer,
email char(15),
primary key (mn) )

Part I: Structured Data I.2: The relational model
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General form of a DDL statement

create table table name( attribute name attribute type
[, attribute name attribute type]*
〈integrity constraints〉 )

Example 2

create table Takes (
mn char(8),
code char(20),
mark integer,
primary key (mn, code),
foreign key (mn) references Students,
foreign key (code) references Courses )
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In this case, the primary key is a pair of fields.

Theforeign key constraintsenforce two further properties:

• Whenever a tuple is inserted, the value for themnfield must be a value

that appears in the primary key column of theStudents table

• Similarly, the value for thecode field must be a value that appears in

the primary key column of theCourses table

create table Takes (
mn char(8),
code char(20),
mark integer,
primary key (mn, code),
foreign key (mn) references Students,
foreign key (code) references Courses )

Part I: Structured Data I.2: The relational model



Inf1, Data & Analysis, 2010 I: 33 / 114

Key constraints example

mn code mark
s0456782 inf1 80
s0412375 geo1 78
s0412375 inf1 56
s0189034 math1 62

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

code name year
inf1 Informatics 1 1

math1 Mathematics 1 1
geo1 Geology 1 1
dbs Database Systems 3
adbs Advanced Databases 4

Referenced relations

Referencing relation

Primary key
Foreign key
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Summary

We have seen two forms of constraint:

primary key ( declaration)

foreign key ( declaration) references table

• Primary key constraints declare primary keys.

• Foreign key constraints link columns of one table to the primary key

columns of another table.

Both are declared by the user, but enforced by the system itself.

(Attempting to enter a tuple that violates the constraint results in failure.)

N.B. In the ER model,Students was an entity set andTakes a

relationhip. In the relational model,bothare (necessarily!) implemented as

tables.
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Translating an ER diagram to a relational schema

Given an ER diagram, we find a relational schema that closely aproximates

the ER design.

The translation isapproximatebecause it is not feasible to capture all the

constraints in the ER design within the relational schema. (In SQL, certain

types of constraint, for example, are inefficient to enforce, and so usually

not implemented.)

There is more than one approach to translating an ER diagram to a

relational schema. Different translations amount to making different

implementation choices for the ER diagram.

In D&A, we just consider a few examples illustrating some of the main

ideas.
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Mapping entity sets

Students

mn

age

email

name

Algorithm

• A table is created for the entity set

• Each attribute of the entity set becomes an field of the table with an

appropriate type

• A primary key is declared
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Mapping entity sets

Students

mn

age

email

name

create table Students (
mn char(8),
name char(20),
age integer,
email char(15),
primary key (mn) )
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Mapping relationship sets (no key constraints)

Students

mn
name

email

Courses

code
name

year

Takes

mark

Algorithm

• A table is created for the relationship set

• The table contains the primary keys of the participating entity sets

• Descriptive attributes of the relationship are added

• A composite primary key is declared on the table

• Foreign key constraints are declared
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Mapping relationship sets (no key constraints)

Students

mn
name

email

Courses

code
name

year

Takes

mark

create table Takes (
mn char(8),
code char(20),
mark integer,
primary key (mn, code),
foreign key (mn) references Students,
foreign key (code) references Courses )
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Mapping relationship sets with key constraints

Students DoSDirected_By

Algorithm

• A table is created for the relationship set

• The primary key of the “source” entity set is declared as the primary

key of the relationship set

• Foreign key constraints are declared for both source and target entity

sets
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Mapping relationship sets with key constraints

Students DoSDirected_By

create table Directed By (
mn char(8),
staff id char(8),
primary key (mn),
foreign key (mn) references Students,
foreign key (staff id) references DoS )

N.B. The participation constraint onStudents in Directed By has not

been implemented. To implement this constraint another approach is

needed.

Part I: Structured Data I.2: The relational model



Inf1, Data & Analysis, 2010 I: 42 / 114

Null values

In SQL, a special value a field can have isnull

A null value means that a field is undefined or missing

Null values arenot allowedto appear inprimary keyfields,

Theyare allowedto appear inforeign keyfields.

Null values can be disallowed from other fields using anot null

declaration

In certain circumstances, by disallowingnull , we can enforce a

participation constraint
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Mapping relationship sets with key+participation constraints

Students DoSDirected_By

Algorithm

• Include a foreign key field for the “target” entity set within the table for

the “source” entity set.

• Give this field anot null declaration.

N.B. By omitting thenot null declaration, we obtain an alternative way

of implementing the key constraint without the participation constraint.

Part I: Structured Data I.2: The relational model



Inf1, Data & Analysis, 2010 I: 44 / 114

Mapping relationship sets with key+participation constraints

Students DoSDirected_By

create table Students (
mn char(8),
name char(20),
age integer,
email char(15),
dos id char(8) not null,
primary key (mn),
foreign key (dos id) references DoS )

Part I: Structured Data I.2: The relational model



Inf1, Data & Analysis, 2010 I: 45 / 114

Mapping weak entity sets and identifying relationships

number capacity

Buildings

name address

Rooms Is_Located
_In

Algorithm

• Create a table for the weak entity set

• Add an attribute set, for the primary key of the entity set’s identifying

owner’s

• Add a foreign key constraint on the identifying owners primary key

• Instruct the system to automatically delete any tuples in the table for

which there are no owners
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Mapping weak entity sets and identifying relationships

number capacity

Buildings

name address

Rooms Is_Located
_In

create table Rooms (
number char(8),
capacity integer,
building name char(20),
primary key (number,building name),
foreign key (building name) references Buildings

on delete cascade )
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Mapping hierarchical entities

Students

mn
name

email

ISA
Full-time
Students

Part-time
Students

semester
load

part-time
load

• Declare a table for the superclass of the hierarchy

• For each subclass, declare another table, containing the superclass’s

primary key and the subclass’s extra attributes

• Each subclass has the same primary key as its superclass

• Declare foreign key constraints
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Mapping hierarchical entities

Students

mn
name

email

ISA
Full-time
Students

Part-time
Students

semester
load

part-time
load

create table PT Students (
mn char(8),
pt load integer,
primary key (mn),
foreign key (mn) references Students )
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Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple relational calculus

I.5 The SQL query language

Required reading: Chapter 4 of [DMS]:§§ 4.1,4.2
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Querying

Once data is organised in a relational schema, the natural next step is to

manipulatedata. For our purposes, this means querying.

Queryingis the process of identifying the parts of stored data that have

properties of interest

We consider three approaches.

• Relational algebra(today’s topic): aproceduralway of expressing

queries over relationally represented data

• Tuple-relational calculus(see I.4): adeclarativeway of expressing

queries, tightly coupled to first-order predicate logic

• SQL(see I.5): a widely implemented query language influenced by

relational algebra and relational calculus
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Operators

The key concept in relational algebra is anoperator

Operators accept a single relation or a pair of relations as input

Operators produce a single relation as output

Operators can becomposedby using one operator’s output as input to

another operator (composition of functions)

There are five basic operators:selection, projection, union, cross-product,

anddifference

Other operators can be defined as composites of these five, but are so

frequently used that they are often treated as fundamental
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Selection and projection:σ andπ

Recall that relational data is stored intables

Selectionandprojectionallow one to isolate any “rectangular subset” of a

single table

• Selection identifiesrowsof interest

• Projection identifiescolumnsof interest

If both are used on a single table, we extract arectangular subsetof the

table
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Selection: example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination
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Selection: general form

General form:σpredicate(Relation instance)

A predicateis a condition that is applied on each row of the table

• It should evaluate to either true or false

• If it evaluates to true, the row is propagated to the output, if it evaluates

to false the row is dropped

• The output table may thus have lower cardinality than the input

Predicates are written in the Boolean form

term1 bop term2 bop . . . bop termm

• Wherebop ∈ {∨, ∧}
• termi’s are of the formattributerop constantor

attribute1 rop attribute2 (whererop ∈ {>, <, =, 6=, ≥, ≤})
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Projection: example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination
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Projection: general form

General form:πcolumn list(Relation instance)

All rows of the input are propagated in the output

Only columns appearing in thecolumn listappear in the output

Thus thearity of the output table may be lower than that of the input table

The resulting relation has a different schema!
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Selection and projection: example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination

Note thealgebraic equivalencebetween:

• σage>18(πname,age(Students))

• πname,age(σage>18(Students))
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Set operations

There are three basic set operations in relational algebra:

• union

• difference

• cross-product

A fourth, intersection, can be expressed in terms of the others

All these set operations are binary.

Essentially, they are the well-known set operations from set theory, but

extended to deal with tuples
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Union

Let R andS be two relations. For union, set difference and intersectionR

andS are required to have compatible schemata:

• Two schemata are said to becompatibleif they have the same number

of fields and corresponding fields in a left-to-right order have the same

domains. N.B., the names of the fields are not used

TheunionR ∪ S of R andS is a new relation with the same schema asR.

It contains exactly the tuples that appear in at least one of the relationsR

andS

N.B. For naming purposes it is assumed that the output relation inherits the

field names from the relation appearing first in the specification (R in the

previous case)
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Union example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math
s0489967 Basil 19 basil@inf
s9989232 Ophelia 24 oph@bio
s0289125 Michael 21 mike@geo

S1∪S2
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Set difference and intersection

Theset differenceR − S andintersectionR ∩ S are also new relations

with the same schema asR andS.

R − S contains exactly those tuples that appear inR but which do not

appear inS

R ∩ S contains exactly those tuples that appear in bothR andS

For both operations, the same naming conventions apply as for union

Note that intersection can be defined from set difference by

R ∩ S = R − (R − S)
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Set difference example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0456782 John 18 john@inf
s0378435 Helen 20 helen@phys

S1-S2
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Intersection example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0412375 Mary 18 mary@inf
s0189034 Peter 22 peter@math

S1∩S2
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Cross product

Thecross-product(also known as theCartesian product) R × S of two

relationsR andS is a new relation where

• The schema of the relation is obtained by first listing all the fields ofR

(in order) followed by all the fields ofS (in order).

• The resulting relation contains one tuple〈r, s〉 for each pair of tuples

r ∈ R ands ∈ S. (Here〈r, s〉 denotes the tuple obtained by

appendingr ands together, withr first ands second.)

Note that if there is a field name common toR andS then two separate

columns with this name appear in the cross-product schema, as defined

above, causing anaming conflict.

N.B. The two relations need not have the same schema to begin with.
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Cross-product example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

S1

code name year
inf1 Informatics 1 1

math1 Mathematics 1 1
R

year
1
1
1
1
1
1
1
1

mn name age email
s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

code name
inf1 Informatics 1

math1 Mathematics 1s0456782 John 18 john@inf
inf1 Informatics 1

math1 Mathematics 1
inf1 Informatics 1

math1 Mathematics 1
inf1 Informatics 1

math1 Mathematics 1

s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math
s0378435 Helen 20 helen@phys

S1×R
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Renaming

The renaming operator changes the names of tables and columns.

This can be used to avoidnaming conflictswhen the application of an
operator results in a schema with duplicate column names

General form

ρNew-relation-name(renaming-list)(Original-relation-name)

Semantics:

• The relation is assigned the new relation name

• The renaming list consists of terms of the formoldname→ newname
which rename a field namedoldnameto newname

• Forρ to be well-defined there should be no naming conflicts in the
output
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Renaming example

mn name age email
Students

ρS(mn→sid, email→address)Students
new table name

renaming list

sid name age address
S

N.B.

• The types of the columns do not change

• Either the renaming list, or the new table name may be empty
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Join

Therelational joinR ./p S is the most frequently used relational operator.

It is aderived operator, it can be defined in terms of cross-product and

selection.

The format for a join isR ./p S whereR andS are relations and thejoin

predicatep is a predicate (as defined on slide 3.54) that applies to the

schema ofR × S.

For example,p may have the formcol1rop col2 wherecol1, col2 are

columns ofR, S androp ∈ {>, <, =, 6=, ≥, ≤}

Formally, the relational join isdefinedby:

R ./p S = σp(R × S)
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Join example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students
Takes

inf1 80
math1 70

s0412375
s0378435

code markmn

code markmnmn name age email
s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

inf1 80
math1 70

s0412375
s0378435s0456782 John 18 john@inf

inf1 80
math1 70

s0412375
s0378435s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math

s0378435 Helen 20 helen@phys
inf1 80
math1 70

s0412375
s0378435

inf1 80
math1 70

s0412375
s0378435

Students ⋈Students.mn = Takes.mn Takes
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Equijoin

An equijoin is a commonly occurring join operation in which the predicate
is a conjunction of equalities of the formR.name1 = S.name2.
(A conjunctionis a list of conditions connected by∧.)

The schema of the equijoin consists of the fields ofR, followed by just
those fields ofS that are not mentioned in the join equalities. The equijoin
is computed byprojectingthe join onto the fields that remain (all those of
R, and those fromS that have not been removed). Put more simply:
remove from the join those columns labelled withS-fields that appear in the
equalities.

Note that the example on the previous slide,
Students ./Students.mn = Takes.mn Takes , is naturally treated as an
equijoin . The resulting relation is then as before, but with the second
column labelledmnremoved.
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Natural join

Thenatural join is a special equijoin in which the equalities are betweenall

fields that have the same name inR andS.

We simply writeR ./ S for such an equijoin.

Note that the equijoin version of the example on slide 3.69 is in fact the

natural joinStudents ./ Takes . (The common field name ismn.)

This is a very natural way of joining two relations, hence the name. It

frequently occurs when joining two tables in which one has a foreign key

constraint referencing the other.
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Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple-relational calculus

I.5 The SQL query language

Required reading: Chapter 4 of [DMS],§§ 4.3
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Motivation

Tuple-relational calculus is another way of writing queries for relational

data.

Its power lies in the fact that it is entirelydeclarative

That is, we specify the properties of the data we are interested in retrieving,

but (in contrast to relational algebra) we do not describe a method by which

the data can be retrieved
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Basic format

Queries are based ontuple variables.

Each tuple variable has an associated schema. The variable ranges over all

possible tuples of values matching the schema declaration.

A query has the form

{T | p(T )}

whereT is a tuple variable andp(T ) is a (first-order predicate logic)

formula (in which the tuple variableT occurs free).

The result of this query is the set of all possible tuplest (consistent with the

schema ofT ) for which the formulap(T ) evaluates to true withT = t
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Simple example

Find all students at least 19 years old

{S | S ∈ Students ∧ S.age > 18}

In detail:

• Tuple variableS is introduced

• S instantiated over all tuples in the Students table

• PredicateS.age > 18 is evaluated on each individual tuple

• If and only if the predicate evaluates to true, the tuple is propagated to

the output
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Formal syntax of atomic formulae

An atomic formulais one of the following:

• R ∈ Rel

• R.a op S.b

• R.a op constant

• constant opS.b

where:R, S are tuple variables,Rel is a relation name,a, b are attributes of

R, S respectively, andop is any operator in the set{>, <, =, 6=, ≥, ≤}
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Formal syntax of (composite) formulae

A formula is (recursively defined) to be one of the following:

• any atomic formula

• ¬p, p ∧ q, p ∨ q, p ⇒ q

• ∃R. p(R), ∀R. p(R)

wherep(R) denotes a formula in which the variableR appears free.

N.B. First-order logic was introduced in more detail in Inf1A Computation
& Logic. Here, we use different notation for the connectives:¬ for not;
∧ for and; ∨ for or; and⇒ for →. Our notation agrees with

Ramakrishnan & Gehrke “Database Management Systems”. The main
difference from standard first-order logic is the use of variables ranging over
tuples (rather than individuals), and the correspondingly specialised forms
of atomic formula.
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A subtle point

In ordinary first-order logic, one can, in theory, form quantifications∃R. p

and∀R. p even whenR does not occur inp. (In practice, such

quantifications are normally useless since they are vacuous.)

In tuple-relational calculus we only allow∃R. p and∀R. p whenR

occurs free inp for the following reason.

• Under this rule, every tuple variableR that appears in a formula is

forced to appear in at least one atomic subformula. The atomic

formulae in whichR appears then determine the schema ofR. The

schema is taken to be the smallest one containing all the fields that are

declared as attributes ofR within the formula itself.
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Illustrative example

An example illustrating the previous point.

{P | ∃S ∈ Students (S.age > 20 ∧ P.name = S.name

∧ P.age = S.age)}

• The schema ofS is that of theStudents table. This is declared by

the atomic formulaS ∈ Students .

• The schema ofP has just two fieldsname andage , with the same

types as the corresponding fields inStudents .

• The query returns a table with two fieldsname andage containing the

names and ages of all students aged 21 or over.

Note the use of∃S ∈ Students (p) for ∃S (S ∈ Students ∧ p).

We make free use of such (standard) abbreviations.
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Further examples (1)

Query:Find the names of students who are taking Informatics 1

Relational algebra:

πStudents.name (Students ./Students.mn =Takes.mn

(Takes ./Takes.code =Courses.code (σname=‘Informatics 1’(Courses ))))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

(C.name = ‘Informatics 1’ ∧ C.code = T.code ∧
S.mn= T.mn ∧ P.name = S.name)}
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Tree representation of algebraic expression (abstract syntax)

For the previous query, changing the bracketing does not change the query.

πStudents.name ((Students ./Students.mn =Takes.mn Takes )

./Takes.code =Courses.code (σname=‘Informatics 1’(Courses )) )

A tree representation can help one visualise a relational algebra query.

Students Takes

⋈Students.mn = Takes.mn

⋈Takes.code = Courses.code

πStudents.name

σname=’Informatics 1’

Courses
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Further examples (2)

Query:Find the names of all courses taken by (everyone called) Joe

Relational algebra:

πCourses.name ((σname=’Joe’(Students )) ./Students.mn =Takes.mn

(Takes ./Takes.code =Courses.code Courses ))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

(S.name = ‘Joe’ ∧ S.mn= T.mn ∧
C.code = T.code ∧ P.name = C.name)}

Part I: Structured Data I.4: Tuple-relational calculus



Inf1, Data & Analysis, 2010 I: 83 / 114

Further examples (3)

Query:Find the names of all students who are taking Informatics 1 or
Geology 1

Relational algebra:

πStudents.name (Students ./Students.mn =Takes.mn

(Takes ./Takes.code =Courses.code

(σname=‘Informatics 1’ ∨name=‘Geology 1’(Courses ))))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

((C.name = ‘Informatics 1’ ∨ C.name = ’Geology 1’) ∧
C.code = T.code ∧ S.mn= T.mn ∧ P.name = S.name)}

Part I: Structured Data I.4: Tuple-relational calculus



Inf1, Data & Analysis, 2010 I: 84 / 114

Further examples (4)

Query:Find the names of students who are taking both Informatics 1 and
Geology 1

Relational algebra:

πStudents.name(

(Students ./Students.mn =Takes.mn

(Takes ./Takes.code =Courses.code

(σname=‘Informatics 1’(Courses))))

∩
(Students ./Students.mn =Takes.mn

(Takes ./Takes.code =Courses.code

(σname=‘Geology 1’(Courses)))) )
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Further examples (4 continued)

Query:Find the names of students who are taking both Informatics 1 and

Geology 1

Tuple-relational calculus:

{P | ∃S ∈ Students (P.name = S.name ∧
∀C ∈ Courses

((C.name = ‘Informatics 1’ ∨ C.name = ‘Geology 1’) ⇒
(∃T ∈ Takes (T.mn= S.mn ∧ T.code = C.code )))) }

Exercise.What does this query return in the case that there is no course in

Courses called ‘Geology 1’? Find a way of rewriting the query so that it

only returns an answer if both ‘Informatics 1’ and ‘Geology 1’ courses exist.
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Further examples (5)

Query:Find the names of all students who are taking all courses

Tuple-relational calculus:

{P | ∃S ∈ Students (P.name = S.name∧
∀C ∈ Courses

(∃T ∈ Takes (T.mn= S.mn ∧ T.code = C.code ))) }

Exercise.Try to write this query in relational algebra.
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Relational algebra and tuple-relational calculus compared

Relational algebra (RA) and tuple-relational calculus (TRC) have thesame

expressive power

That is, if a query can be expressed in RA, then it can be expressed in TRC,

and vice-versa

Why is it useful to have both approaches?
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Declarative versus procedural

Recall that TRC isdeclarativeand RA isprocedural.

This suggests the following methodology.

• Specifythe data that needs to be retrieved using TRC.

• Translate this to anequivalent queryin RA that gives anefficient

methodof retrieving the data.

This methodology underpins practical approaches toquery optimisationin

relational databases.

In practice, queries are written in a real-world query language such as SQL,

rather than TRC.

Nevertheless, query optimisation is of enormous importance in applications.

Part I: Structured Data I.4: Tuple-relational calculus



Inf1, Data & Analysis, 2010 I: 89 / 114

Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple-relational calculus

I.5 The SQL query language

Required reading: Chapter 5 of [DMS]:§§ 5.1,5.2,5.3,5.5,5.6
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A brief history

SQL stands forStructured Query Language

Originally developed at IBM in SEQUEL-XRM and System-R projects

(1974–77)

Caught on very rapidly

Currently, most widely used commercial relational database language

Continues to evolve in response to changing needs. (Adopted as a standard

by ANSI in 1986, ratified by ISO 1987, revised: 1989, 1992, 1999, 2003,

2006, 2008!)

Pronounced S. Q. L.
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Data Manipulation Language

In note 2 we met the SQLData Definition Language (DDL), which is used

to define relational schemata.

This lecture introduces theData Manipulation Language (DML)

The DML allows users to:

• insert, delete and modify rows

• query the database

Note. SQL is a large and complex language. The purpose of this lecture is

to introduce some of the basic and most important query forms, sufficient

for expressing the kinds of query already considered in relational algebra

and tuple-relational calculus. (SQL is currently covered in more detail in

the third-year “Database Systems” course.)
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Inserting data

Assume a tableStudents with schema:

Students (mn:char(8), name:char(20),

age:integer, email:char(15))

Insert data using:

INSERT

INTO Students (mn, name, age, email)

VALUES (’s0765432’, ’Bob’, 19, ’bob@sms’)

Although SQL allows the list of column names to be omitted from the
INTO clause (SQL merely requires the tuple of values to be presented in the
correct order), it is considered good style to write this list explicitly.

One reason for this is that it means theINSERT command can be
understood without separate reference to the schema declaration.
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Deleting data

Deleteall students called Bob fromStudents .

DELETE

FROM Students S

WHERE S.name = ’Bob’

Updating data

Rename student ‘s0765432’ Bobby.

UPDATE Students S

SET S.name = ’Bobby’

WHERE S.mn = ’s0765432’
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Form of a basic SQL query

SELECT [DISTINCT] select-list

FROM from-list

WHEREqualifications

• TheSELECTclause specifies columns to be retained in the result.

(N.B., it performs aprojectionrather than aselection.)

• TheFROMclause specifies a cross-product of tables.

• TheWHEREclause specifies selection conditions on the rows of the

table obtained via theFROMclause

• TheSELECTandFROMclauses are required, theWHEREclause is

optional.
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A simple example

Query: Find all students at least 19 years old

SELECT *

FROM Students S

WHERE S.age > 18

This returns all rows in theStudents table satisfying the condition.

Alternatively, one can be explicit about the fields.

SELECT S.mn, S.name, S.age, S.email

FROM Students S

WHERE S.age > 18

The first approach is useful for interactive querying. The second is
preferable for queries that are to be reused and maintained since the schema
of the result is made explicit in the query itself.
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A simple example continued

Query: Find the names and ages of all students at least 19 years old

SELECT S.name, S.age

FROM Students S

WHERE S.age > 18

This query returns a table with one row (with the specified fields) for each
student in theStudents table whose age is 19 years or over.

SELECT DISTINCT S.name, S.age

FROM Students S

WHERE S.age > 18

This differs from the previous query in that only distinct rows are returned.
If more than one student have the same name and age (> 18 years) then the
corresponding name-age pair will be included only once in the output table.
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Query syntax in detail

• Thefrom-list in theFROMclause is a list of tables. A table name can be
followed by arange variable; e.g.,S in the queries above.

• Theselect-listin theSELECTclause is a list of (expressions involving)
column names from the tables named in thefrom-list. Column names
can be prefixed by range variables.

• Thequalificationin theWHEREclause is a boolean combination (built
usingAND, OR, andNOT) of conditions of the formexpopexp, where
op ∈ {<, =, >, <=, <>, >=, } (the last three stand for≤, 6=, ≥
respectively), andexpis a column name, a constant, or an
arithmetic/string expression.

• TheDISTINCT keyword is optional. It indicates that the table
computed as an answer to the query should not contain duplicate rows.
The default is that duplicate rows are not eliminated.
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The meaning of a query

A query computes a table whose contents can be understood via the

following conceptual evaluation strategyfor computing the table.

1. Compute the cross-product of the tables in thefrom-list.

2. Delete rows in the cross-product that fail thequalificationcondition.

3. Delete all columns that do not appear in theselect-list.

4. If DISTINCT is specified, eliminate duplicate rows.

This is aconceptualevaluation strategy in the sense that it determines the

answer to the query, but would be inefficient to follow in practice.

Real-world database management systems usequery optimisation

techniques (based on relational algebra!) to find more efficient strategies for

evaluating queries.

Part I: Structured Data I.5: The SQL query language



Inf1, Data & Analysis, 2010 I: 99 / 114

Diversion: multisets

The sensitivity of SQL to duplicate rows in tables means that SQL models a
table as amultisetof rows, rather than as asetof rows. (In contrast, in the
relational model, a table is simply arelation, which is just asetof tuples.)

A multiset(sometimes called abag) is like a set except that it is sensitive to
multiplicities, i.e., to the number of times a value appears inside it.

For example, the following define the same set, but aredifferentmultisets:

{2, 3, 5} {2, 3, 3, 5} {2, 3, 3, 5, 5, 5} {2, 2, 2, 3, 3, 5}

Although multisets are sensitive to multiplicities, they are not sensitive to
the order in which values are given.

For example, the following define the same multiset.

{2, 3, 3, 5} {3, 2, 5, 3} {5, 3, 3, 2}
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Example tables

mn name age email

s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

Students

code name year

inf1 Informatics 1 1

math1 Mathematics 1 1

Courses

mn code mark

s0412375 inf1 80

s0378435 math1 70

Takes
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Example query (1)

Query:Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’
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Example query (1 continued)

Query:Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 1of conceptual evaluation constructs the cross-product ofStudents ,

Takes andCourses .

For the example tables, this has 16 rows and 10 columns. (The columns are:

S.mn, S.name , S.age , S.email , T.mn , T.code , T.mark , C.code ,

C.name , C.year .)
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Example query (1 continued)

Query:Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 2of conceptual evaluation selects the rows satisfying the condition:

S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

For the example tables, this has just 1 row (and still 10 columns).
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Example query (1 continued)

Query:Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 3of conceptual evaluation eliminates all columns exceptS.name .

For the example tables, this produces the tableMary

Step 4of conceptual evaluation does not apply sinceDISTINCT is not

specified. (IfDISTINCT were specified it would not change the result for

our example tables, but it would for other choices of data.)
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Example query (2)

Query:Find the names of all courses taken by (everyone called) Mary.

SELECT C.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND S.name = ’Mary’
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Example query (3)

Query:Find the names of all students who are taking Informatics 1 or

Mathematics 1.

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code AND

(C.name=’Informatics 1’ OR C.name=’Mathematics 1’)
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Example query (3 continued)

Query:Find the names of all students who are taking Informatics 1 or
Mathematics 1.

SELECT S1.name

FROM Students S1, Takes T1, Courses C1

WHERE S1.mn = T1.mn AND T1.code = C1.code

AND C1.name = ’Informatics 1’

UNION

SELECT S2.name

FROM Students S2, Takes T2, Courses C2

WHERE S2.mn = T2.mn AND T2.code = C2.code

AND C2.name = ’Mathematics 1’
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Example query (4)

Query:Find the names of all students who are taking both Informatics 1

and Mathematics 1.

SELECT S.name

FROM Students S, Takes T1, Courses C1,

Takes T2, Courses C2,

WHERE S.mn = T1.mn AND T1.code = C1.code

AND S.mn = T2.mn AND T2.code = C2.code

AND C1.name = ’Informatics 1’

AND C2.name = ’Mathematics 1’

This is complicated, somewhat counterintuitive (and also inefficient!)
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Example query (5)

Query:Find the matriculation numbers and names of all students who are

taking both Informatics 1 and Mathematics 1.

SELECT S1.mn, S1.name

FROM Students S1, Takes T1, Courses C1

WHERE S1.mn = T1.mn AND T1.code = C1.code

AND C1.name = ’Informatics 1’

INTERSECT

SELECT S2.mn, S2.name

FROM Students S2, Takes T2, Courses C2

WHERE S2.mn = T2.mn AND T2.code = C2.code

AND C2.name = ’Mathematics 1’
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Example query (6)

Query:Find the matriculation numbers and names of of all students who are

taking Informatics 1 but not Mathematics 1.

SELECT S1.mn, S1.name

FROM Students S1, Takes T1, Courses C1

WHERE S1.mn = T1.mn AND T1.code = C1.code

AND C1.name = ’Informatics 1’

EXCEPT

SELECT S2.mn, S2.name

FROM Students S2, Takes T2, Courses C2

WHERE S2.mn = T2.mn AND T2.code = C2.code

AND C2.name = ’Mathematics 1’
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Example query (7)

Query:Find all pairs of matriculation numbers such that the first student in

the pair obtained a higher mark than the second student in Informatics 1.

SELECT S1.mn, S2.mn

FROM Students S1, Takes T1, Courses C,

Students S2, Takes T2

WHERE S1.mn = T1.mn AND T1.code = C.code

AND S2.mn = T2.mn AND T2.code = C.code

AND C.name = ’Informatics 1’

AND T1.mark > T2.mark
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Aggregate operators

In addition to retrieving data, we often want to perform computation over
data.

SQL includes five usefulaggregate operations, which can be applied on any
column, sayA, of a table.

1. COUNT ([DISTINCT] A) : The number of [distinct] values in theA
column.

2. SUM ([DISTINCT] A) : The sum of all [distinct] values in theA
column.

3. AVG ([DISTINCT] A) : The average of all [distinct] values in theA

column.

4. MAX (A) : The maximum value in theA column.

5. MIN (A) : The minimum value in theA column.
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Example query (8)

Query: Find the number of students taking Informatics 1.

SELECT COUNT(T.mn)

FROM Takes T, Courses C

WHERE T.code = C.code AND C.name = ’Informatics 1’

Example query (9)

Query: Find the average mark in Informatics 1.

SELECT AVG(T.mark)

FROM Takes T, Courses C

WHERE T.code = C.code AND C.name = ’Informatics 1’
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Beyond this lecture

There are many topics we haven’t covered:

• Nested queries

• TheGROUP BYandHAVINGclauses

• Treatment ofNULLvalues

• Complex integrity constraints

• Triggers

These are treated in some detail in Chapter 5 of Ramakrishnan & Gehrke’s

“Database Management Systems”.

Knowledge of these topics isnot requiredfor Informatics 1.
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