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Part I — Structured data

• For some application domains, data is inherently structured

– For instance, all students share common information

• In such domains, it makes sense to organise the data in a way that
directly maps to their physical properties, and to devise mechanisms to
access and manipulate data

• We will deal with two main data representation models:

– The entity-relationship (ER) model, and the relational model

• Finally, we will deal with data manipulation for the relational model, in
particular:

– Relational algebra, the Tuple-relational calculus and the query
language SQL

Part I: Structured Data
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Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple relational calculus

I.5 The SQL query language

Part I: Structured Data I.1: The ER data model
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Required reading

You are required to read Chapter 2 of:

[DMS] R. Ramakrishnan and J. Gehrke

Database Management Systems

McGraw-Hill, Third Edition, 2003.

In particular, §§ 2.1–2.5.
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Initial stages of database design

1. Requirements analysis.

Understand what data is to be stored in the database and what
operations are likely to be performed on it.

2. Conceptual design

Develop a high-level description of data to be stored and constraints
that hold over it.

This description is often given using the ER data model.

3. Logical design

Implement the conceptual design by mapping it to a logical data
representation. The outcome is a logical schema.

The implementation is often performed by translating the ER data
model into a relational database schema (see I.2).

Part I: Structured Data I.1: The ER data model
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The ER data model

• What is it used for?

The ER model is a way to describe entities (for example, real-world
entities) and the relationships between them

• Why is it useful?

Because it maps to different logical data models, including the
relational model

• How is it used?

It is essentially a way to visualise data and their dependencies

Part I: Structured Data I.1: The ER data model
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Entities and entity sets

Any distinguishable object (for example, in the real world) can be an entity

A collection of the same type of entities is an entity set

Entity sets are represented by boxes, labelled with the entity set’s name

Students

Matric.
number

name

email
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Attributes

Each entity of the same entity set has some characteristic attributes

Attributes are represented by ovals, labelled with the attribute’s name,
connected to the entity set they belong to.

Students

Matric.
number

name

email
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Domains

Each attribute has a domain from which allowable values are derived

E.g., Matric. number is an integer
name and email are 40-character strings

Students

Matric.
number

name

email
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Keys

A key is a minimal set of attributes whose values allow us to uniquely
identify an entity in an entity set

There may be more than one such minimal set, they are called candidate
keys

E.g., either Matric. number or email can act as keys.

Students

Matric.
number

name

email
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Primary keys

If multiple candidate keys exist, we choose one and make it the primary key.

The attributes occurring in the primary key are underlined in the ER
diagram

Students

Matric.
number

name

email
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Relationships and relationship sets

Relationships model associations between entities

Relations are grouped into relationship sets of relationships between entities
from specified entity sets.

Relationship sets are represented as diamonds in ER diagrams

Relationship may have attributes of their own.

Students

mn
name

email

Courses

code
name

year

Takes

mark

Part I: Structured Data I.1: The ER data model



Inf1, Data & Analysis, 2009 I: 13 / 114

There is no bound on the number of entities participating in a relationship.

Correspondingly, there is no bound on the number of relationships an entity
can participate in

Students

mn
name

email

Courses

code
name

year

Takes

mark

Degrees

name

Majors_In Appears_In
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Instances

Entity instances and relationship instances are what we obtain after
instantiating the attributes of an entity or a relationship

Examples

An entity instance from the Students entity set:

(123, Natassa, natassa@somewhere)

An entity instance from the Courses entity set:

(inf1, Informatics 1, 1)

A relationship instance from the Takes relationship set:

(123, Natassa, natassa@somewhere, inf1, Informatics 1, 1, 88)
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Key constraints

A key constraint captures identification connections between entities
participating in a relationship

Definition. Suppose R is a relationship between n entity sets,
E1, . . . , En. There is a key constraint on one of the entities, Ek, if,
however we instantiate the attributes of Ek, there is at most one relationship
instance participated in by the attribute instantiation.

Example. Students, directors of studies (DoS), and the relationship between
them (Directed-By)

• Given a Students instance, we can determine the Directed-By instance
it appears in. That is, each student has a unique DoS.

Part I: Structured Data I.1: The ER data model
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One-to-many and many-to-many relationships

A one-to-many relationship R between entity sets Eo and Em means that,
for each instance em ∈ Em, there is at most one instance eo ∈ Eo such
that eo and em appear together in some relationship instance r ∈ R.

More simply: each instance eo ∈ Eo may be associated (in R) with many
instances em ∈ Em, but each instance em ∈ Em must be associated (in
R) with at most one instance eo ∈ Eo.

If R is a binary relationship between Eo and Em, then being one-to-many
is equivalent to there being a key contraint on Em.

A many-to-many relationship R between entity sets Eo and Em means that
there are no constraints on the number of times entity instances eo ∈ Eo

and em ∈ Em may appear in relationship instances r ∈ R.

Part I: Structured Data I.1: The ER data model
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Examples

The Directed By relationship between the Students and DoS entity sets is a
many-to-one relationship.

• Each student has a single DoS, but

• each DoS may have many students

The Takes relationship between Students and Courses is a many-to-many
relationship

• Each student takes many different courses;

• Each course may be taken by many different students

Part I: Structured Data I.1: The ER data model
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Participation constraints

Participation constraints capture the mode in which an entity participates in
a relationship.

Total participation on entity set E for relationship R is declared when every
entity instance e ∈ E appears in at least one relationship instance of R.

Partial participation on entity set E for relationship R is declared when
there exist entities e ∈ E that do not appear in instances of R.

Part I: Structured Data I.1: The ER data model
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Example

0459295
0482364
0423872
0403462

1190345
5690246
1295298

Students DoSsDirected_By

Total participation Partial participation

Students DoSDirected_By

Notation. A thick arrow from an entity to a relationship represents that the
entity both totally participates in the relationship and also satisfies a key
constraint.
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Weak entity sets

In certain cases, it is impossible to designate a primary key for entities of an
entity set.

Instead, the only way in which set participation can be declared is by
“borrowing” the key of another entity set

number capacity

Buildings

name address

Rooms Is_Located
_In
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Notation

Double lines for weak entity and identifying relationship

Doubly underlined attributes of the weak entity set participating in the
composite key

The identifying relationship is many-to-one and total.

number capacity

Buildings

name address

Rooms Is_Located
_In
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Weak entity set: Definition

• A weak entity set is an entity set for which a primary key consisting
only of its own attributes cannot be identified

• The key is formed by a combination of its own attributes and the key
attributes from another entity set with which it has a relationship

• The entity set from which attributes are borrowed is called the
identifying owner

• The relationship between the weak entity set and its identifying owner
is called an identifying relationship.

• The identifying relationship must be many-to-one and total.

Part I: Structured Data I.1: The ER data model
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Hierarchical entities and inheritance

Subclasses (Full-time Students, Part-time Students) specialise a superclass
(Students) by inheriting attributes from the superclass.

Subclasses also have additional attributes of their own.

Students

mn
name

email

ISA
Full-time
Students

Part-time
Students

semester
load

part-time
load
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Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple relational calculus

I.5 The SQL query language

Required reading: Chapter 3 of [DMS], §§ 3.1,3.2,3.4,3.5

Part I: Structured Data I.2: The relational model
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History of relational model
• The relational model was introduced in 1970 by Edgar F. Codd, a

British computer scientist working at IBM’s Almaden Research Center
in San Jose, California.

• IBM was initially slow to exploit the idea, but by the mid 1970’s IBM
was at the forefront of the commercial development of relational
database systems with its System R project, which included the
development and first implementation of SQL. (Codd was sidelined
from this project!)

• Around the same time, the relational model was developed and
implemented at UC Berkely (the Ingres project)

• Nowadays relational databases are a multi-billion pound industry.

• A major reason for the success of the relational model is its simplicity

• In 1981, Codd received the Turing Award for his pioneering work on
relational databases

Part I: Structured Data I.2: The relational model
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Building blocks

• The basic construct is a relation.

– It consists of a schema and an instance

– The schema can be thought of as the format of the relation

– A relation instance is also known as a table

• A schema is a set of fields, which are (name, domain) pairs

– fields may be referred to as attributes, or columns

– domains are referred to as types

• The rows of a table are called tuples (or records) and they are value
assignments from the specified domain for the fields of the table

• The arity of a relation is its number of columns (fields)

• The cardinality of a table is its number of rows (tuples)

Part I: Structured Data I.2: The relational model
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Example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Schema

Fields (a.k.a. attributes, columns)

{Tuples
(a.k.a. records,

rows)
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Data definition in SQL

• SQL stands for Structured Query Language

• A special subset of SQL called the Data Definition Language (DDL) is
used to declare table schemata

• Relations are called tables in SQL

• It is a typed language

– For simplicity, we will assume there are only three types: (i)
integer for integer numbers, (ii) real for real numbers (floating
point), and (iii) char(n) for a string of maximum length n

Part I: Structured Data I.2: The relational model
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General form of a DDL statement

create table table name ( attribute name attribute type
[, attribute name attribute type ]*
〈integrity constraints〉 )

Example 1

create table Students (
mn char(8),
name char(20),
age integer,
email char(15),
primary key (mn) )

Part I: Structured Data I.2: The relational model



Inf1, Data & Analysis, 2009 I: 30 / 114

The example defines the Students table.

The last line implements a primary key constraint, it declares mn to be the
chosen primary key for Students.

This constraint requires that the Students table contains at most one row
with any given mn value. This is enforced by the system.

Any attempt to insert a new row with an mn value that already exists in
some other row of the table will fail.

create table Students (
mn char(8),
name char(20),
age integer,
email char(15),
primary key (mn) )

Part I: Structured Data I.2: The relational model
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General form of a DDL statement

create table table name ( attribute name attribute type
[, attribute name attribute type ]*
〈integrity constraints〉 )

Example 2

create table Takes (
mn char(8),
code char(20),
mark integer,
primary key (mn, code),
foreign key (mn) references Students,
foreign key (code) references Courses )

Part I: Structured Data I.2: The relational model
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In this case, the primary key is a pair of fields.

The foreign key constraints enforce two further properties:

• Whenever a tuple is inserted, the value for the mn field must be a value
that appears in the primary key column of the Students table

• Similarly, the value for the code field must be a value that appears in
the primary key column of the Courses table

create table Takes (
mn char(8),
code char(20),
mark integer,
primary key (mn, code),
foreign key (mn) references Students,
foreign key (code) references Courses )

Part I: Structured Data I.2: The relational model
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Key constraints example

mn code mark
s0456782 inf1 80
s0412375 geo1 78
s0412375 inf1 56
s0189034 math1 62

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

code name year
inf1 Informatics 1 1

math1 Mathematics 1 1
geo1 Geology 1 1
dbs Database Systems 3
adbs Advanced Databases 4

Referenced relations

Referencing relation

Primary key
Foreign key

Part I: Structured Data I.2: The relational model



Inf1, Data & Analysis, 2009 I: 34 / 114

Summary

We have seen two forms of constraint:

primary key (declaration)

foreign key (declaration) references table

• Primary key constraints declare primary keys.

• Foreign key constraints link columns of one table to the primary key
columns of another table.

Both are declared by the user, but enforced by the system itself.
(Attempting to enter a tuple that violates the constraint results in failure.)

N.B. In the ER model, Students was an entity set and Takes a
relationhip. In the relational model, both are (necessarily!) implemented as
tables.

Part I: Structured Data I.2: The relational model
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Translating an ER diagram to a relational schema

Given an ER diagram, we find a relational schema that closely aproximates
the ER design.

The translation is approximate because it is not feasible to capture all the
constraints in the ER design within the relational schema. (In SQL, certain
types of constraint, for example, are inefficient to enforce, and so usually
not implemented.)

There is more than one approach to translating an ER diagram to a
relational schema. Different translations amount to making different
implementation choices for the ER diagram.

In D&A, we just consider a few examples illustrating some of the main
ideas.

Part I: Structured Data I.2: The relational model
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Mapping entity sets

Students

mn

age

email

name

Algorithm

• A table is created for the entity set

• Each attribute of the entity set becomes an field of the table with an
appropriate type

• A primary key is declared
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Mapping entity sets

Students

mn

age

email

name

create table Students (
mn char(8),
name char(20),
age integer,
email char(15),
primary key (mn) )
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Mapping relationship sets (no key constraints)

Students

mn
name

email

Courses

code
name

year

Takes

mark

Algorithm

• A table is created for the relationship set

• The table contains the primary keys of the participating entity sets

• Descriptive attributes of the relationship are added

• A composite primary key is declared on the table

• Foreign key constraints are declared
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Mapping relationship sets (no key constraints)

Students

mn
name

email

Courses

code
name

year

Takes

mark

create table Takes (
mn char(8),
code char(20),
mark integer,
primary key (mn, code),
foreign key (mn) references Students,
foreign key (code) references Courses )
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Mapping relationship sets with key constraints

Students DoSDirected_By

Algorithm

• A table is created for the relationship set

• The primary key of the “source” entity set is declared as the primary
key of the relationship set

• Foreign key constraints are declared for both source and target entity
sets

Part I: Structured Data I.2: The relational model
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Mapping relationship sets with key constraints

Students DoSDirected_By

create table Directed By (
mn char(8),
staff id char(8),
primary key (mn),
foreign key (mn) references Students,
foreign key (staff id) references DoS )

N.B. The participation constraint on Students in Directed By has not
been implemented. To implement this constraint another approach is
needed.

Part I: Structured Data I.2: The relational model
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Null values

In SQL, a special value a field can have is null

A null value means that a field is undefined or missing

Null values are not allowed to appear in primary key fields,

They are allowed to appear in foreign key fields.

Null values can be disallowed from other fields using a not null

declaration

In certain circumstances, by disallowing null, we can enforce a
participation constraint

Part I: Structured Data I.2: The relational model
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Mapping relationship sets with key+participation constraints

Students DoSDirected_By

Algorithm

• Include a foreign key field for the “target” entity set within the table for
the “source” entity set.

• Give this field a not null declaration.

N.B. By omitting the not null declaration, we obtain an alternative way
of implementing the key constraint without the participation constraint.

Part I: Structured Data I.2: The relational model
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Mapping relationship sets with key+participation constraints

Students DoSDirected_By

create table Students (
mn char(8),
name char(20),
age integer,
email char(15),
dos id char(8) not null,
primary key (mn),
foreign key (dos id) references DoS )

Part I: Structured Data I.2: The relational model
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Mapping weak entity sets and identifying relationships

number capacity

Buildings

name address

Rooms Is_Located
_In

Algorithm

• Create a table for the weak entity set

• Add an attribute set, for the primary key of the entity set’s identifying
owner’s

• Add a foreign key constraint on the identifying owners primary key

• Instruct the system to automatically delete any tuples in the table for
which there are no owners
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Mapping weak entity sets and identifying relationships

number capacity

Buildings

name address

Rooms Is_Located
_In

create table Rooms (
number char(8),
capacity integer,
building name char(20),
primary key (number,building name),
foreign key (building name) references Buildings

on delete cascade )

Part I: Structured Data I.2: The relational model
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Mapping hierarchical entities

Students

mn
name

email

ISA
Full-time
Students

Part-time
Students

semester
load

part-time
load

• Declare a table for the superclass of the hierarchy

• For each subclass, declare another table, containing the superclass’s
primary key and the subclass’s extra attributes

• Each subclass has the same primary key as its superclass

• Declare foreign key constraints
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Mapping hierarchical entities

Students

mn
name

email

ISA
Full-time
Students

Part-time
Students

semester
load

part-time
load

create table PT Students (
mn char(8),
pt load integer,
primary key (mn),
foreign key (mn) references Students )

Part I: Structured Data I.2: The relational model
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Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple relational calculus

I.5 The SQL query language

Required reading: Chapter 4 of [DMS]: §§ 4.1,4.2

Part I: Structured Data I.3: Relational algebra
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Querying

Once data is organised in a relational schema, the natural next step is to
manipulate data. For our purposes, this means querying.

Querying is the process of identifying the parts of stored data that have
properties of interest

We consider three approaches.

• Relational algebra (today’s topic): a procedural way of expressing
queries over relationally represented data

• Tuple-relational calculus (see I.4): a declarative way of expressing
queries, tightly coupled to first order predicate logic

• SQL (see I.5): a widely implemented query language influenced by
relational algebra and relational calculus

Part I: Structured Data I.3: Relational algebra
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Operators

The key concept in relational algebra is an operator

Operators accept a single relation or a pair of relations as input

Operators produce a single relation as output

Operators can be composed by using one operator’s output as input to
another operator (composition of functions)

There are five basic operators: selection, projection, union, cross-product,
and difference

Other operators can be defined as composites of these five, but are so
frequently used that they are often treated as fundamental

Part I: Structured Data I.3: Relational algebra
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Selection and projection: σ and π

Recall that relational data is stored in tables

Selection and projection allow one to isolate any “rectangular subset” of a
single table

• Selection identifies rows of interest

• Projection identifies columns of interest

If both are used on a single table, we extract a rectangular subset of the
table
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Selection: example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination
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Selection: general form

General form: σpredicate(Relation instance)

A predicate is a condition that is applied on each row of the table

• It should evaluate to either true or false

• If it evaluates to true, the row is propagated to the output, if it evaluates
to false the row is dropped

• The output table may thus have lower cardinality than the input

Predicates are written in the Boolean form

term1 bop term2 bop . . . bop termm

• Where bop ∈ {∨, ∧}
• termi’s are of the form attribute rop constant or

attribute1 rop attribute2 (where rop ∈ {>, <, =, 6=, ≥, ≤})

Part I: Structured Data I.3: Relational algebra
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Projection: example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination
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Projection: general form

General form: πcolumn list(Relation instance)

All rows of the input are propagated in the output

Only columns appearing in the column list appear in the output

Thus the arity of the output table may be lower than that of the input table

The resulting relation has a different schema!

Part I: Structured Data I.3: Relational algebra
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Selection and projection: example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students

name age
John 18
Mary 18
Helen 20
Peter 22

πname, age(Students)

mn name age email
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

σage>18(Students)

name age
Helen 20
Peter 22

Combination

Note the algebraic equivalence between:

• σage>18(πname,age(Students))

• πname,age(σage>18(Students))
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Set operations

There are three basic set operations in relational algebra:

• union

• difference

• cross-product

A fourth, intersection, can be expressed in terms of the others

All these set operations are binary.

Essentially, they are the well-known set operations from set theory, but
extended to deal with tuples

Part I: Structured Data I.3: Relational algebra
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Union

Let R and S be two relations. For union, set difference and intersection R

and S are required to have compatible schemata:

• Two schemata are said to be compatible if they have the same number
of fields and corresponding fields in a left-to-right order have the same
domains. N.B., the names of the fields are not used

The union R ∪ S of R and S is a new relation with the same schema as R.
It contains exactly the tuples that appear in at least one of the relations R

and S

N.B. For naming purposes it is assumed that the output relation inherits the
field names from the relation appearing first in the specification (R in the
previous case)
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Union example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math
s0489967 Basil 19 basil@inf
s9989232 Ophelia 24 oph@bio
s0289125 Michael 21 mike@geo

S1∪S2
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Set difference and intersection

The set difference R − S and intersection R ∩ S are also new relations
with the same schema as R and S.

R − S contains exactly those tuples that appear in R but which do not
appear in S

R ∩ S contains exactly those tuples that appear in both R and S

For both operations, the same naming conventions apply as for union

Note that intersection can be defined from set difference by
R ∩ S = R − (R − S)
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Set difference example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0456782 John 18 john@inf
s0378435 Helen 20 helen@phys

S1-S2
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Intersection example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

mn name age email
s0489967 Basil 19 basil@inf
s0412375 Mary 18 mary@inf
s9989232 Ophelia 24 oph@bio
s0189034 Peter 22 peter@math
s0289125 Michael 21 mike@geo

S1

S2

mn name age email
s0412375 Mary 18 mary@inf
s0189034 Peter 22 peter@math

S1∩S2
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Cross product

The cross-product (also known as the Cartesian product) R × S of two
relations R and S is a new relation where

• The schema of the relation is obtained by first listing all the fields of R

(in order) followed by all the fields of S (in order).

• The resulting relation contains one tuple 〈r, s〉 for each pair of tuples
r ∈ R and s ∈ S. (Here 〈r, s〉 denotes the tuple obtained by
appending r and s together, with r first and s second.)

Note that if there is a field name common to R and S then two separate
columns with this name appear in the cross-product schema, as defined
above, causing a naming conflict.

N.B. The two relations need not have the same schema to begin with.
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Cross-product example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

S1

code name year
inf1 Informatics 1 1

math1 Mathematics 1 1
R

year
1
1
1
1
1
1
1
1

mn name age email
s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

code name
inf1 Informatics 1

math1 Mathematics 1s0456782 John 18 john@inf
inf1 Informatics 1

math1 Mathematics 1
inf1 Informatics 1

math1 Mathematics 1
inf1 Informatics 1

math1 Mathematics 1

s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math
s0378435 Helen 20 helen@phys

S1×R
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Renaming

The renaming operator changes the names of tables and columns.

This can be used to avoid naming conflicts when the application of an
operator results in a schema with duplicate column names

General form

ρNew-relation-name(renaming-list)(Original-relation-name)

Semantics:

• The relation is assigned the new relation name

• The renaming list consists of terms of the form oldname → newname
which rename a field named oldname to newname

• For ρ to be well-defined there should be no naming conflicts in the
output
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Renaming example

mn name age email
Students

ρS(mn→sid, email→address)Students
new table name

renaming list

sid name age address
S

N.B.

• The types of the columns do not change

• Either the renaming list, or the new table name may be empty
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Join

The relational join R ./p S is the most frequently used relational operator.

It is a derived operator, it can be defined in terms of cross-product and
selection.

The format for a join is R ./p S where R and S are relations and the join
predicate p is a predicate (as defined on slide 3.54) that applies to the
schema of R × S.

For example, p may have the form col1rop col2 where col1, col2 are
columns of R, S and rop ∈ {>, <, =, 6=, ≥, ≤}

Formally, the relational join is defined by:

R ./p S = σp(R × S)
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Join example

mn name age email
s0456782 John 18 john@inf
s0412375 Mary 18 mary@inf
s0378435 Helen 20 helen@phys
s0189034 Peter 22 peter@math

Students
Takes

inf1 80
math1 70

s0412375
s0378435

code markmn

code markmnmn name age email
s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

inf1 80
math1 70

s0412375
s0378435s0456782 John 18 john@inf

inf1 80
math1 70

s0412375
s0378435s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math

s0378435 Helen 20 helen@phys
inf1 80
math1 70

s0412375
s0378435

inf1 80
math1 70

s0412375
s0378435

Students ⋈Students.mn = Takes.mn Takes
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Equijoin

An equijoin is a commonly occurring join operation in which the predicate
is a conjunction of equalities of the form R.name1 = S.name2.
(A conjunction is a list of conditions connected by ∧.)

The schema of the equijoin consists of the fields of R, followed by just
those fields of S that are not mentioned in the join equalities. The equijoin
is computed by projecting the join onto the fields that remain (all those of
R, and those from S that have not been removed). Put more simply:
remove from the join those columns labelled with S-fields that appear in the
equalities.

Note that the example on the previous slide,
Students ./Students.mn = Takes.mn Takes, is naturally treated as an
equijoin . The resulting relation is then as before, but with the second
column labelled mn removed.
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Natural join

The natural join is a special equijoin in which the equalities are between all
fields that have the same name in R and S.

We simply write R ./ S for such an equijoin.

Note that the equijoin version of the example on slide 3.69 is in fact the
natural join Students ./ Takes. (The common field name is mn.)

This is a very natural way of joining two relations, hence the name. It
frequently occurs when joining two tables in which one has a foreign key
constraint referencing the other.

Part I: Structured Data I.3: Relational algebra



Inf1, Data & Analysis, 2009 I: 72 / 114

Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple-relational calculus

I.5 The SQL query language

Required reading: Chapter 4 of [DMS], §§ 4.3
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Motivation

Tuple-relational calculus is another way of writing queries for relational
data.

Its power lies in the fact that it is entirely declarative

That is, we specify the properties of the data we are interested in retrieving,
but (in contrast to relational algebra) we do not describe a method by which
the data can be retrieved
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Basic format

Queries are based on tuple variables.

Each tuple variable has an associated schema. The variable ranges over all
possible tuples of values matching the schema declaration.

A query has the form

{T | p(T )}

where T is a tuple variable and p(T ) is a (first-order predicate logic)
formula (in which the tuple variable T occurs free).

The result of this query is the set of all possible tuples t (consistent with the
schema of T ) for which the formula p(T ) evaluates to true with T = t
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Simple example

Find all students at least 19 years old

{S | S ∈ Students ∧ S.age > 18}

In detail:

• Tuple variable S is introduced

• S instantiated over all tuples in the Students table

• Predicate S.age > 18 is evaluated on each individual tuple

• If and only if the predicate evaluates to true, the tuple is propagated to
the output
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Formal syntax of atomic formulae

An atomic formula is one of the following:

• R ∈ Rel

• R.a op S.b

• R.a op constant

• constant op S.b

where: R, S are tuple variables, Rel is a relation name, a, b are attributes of
R, S respectively, and op is any operator in the set {>, <, =, 6=, ≥, ≤}
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Formal syntax of (composite) formulae

A formula is (recursively defined) to be one of the following:

• any atomic formula

• ¬p, p ∧ q, p ∨ q, p ⇒ q

• ∃R. p(R), ∀R. p(R)

where p(R) denotes a formula in which the variable R appears free.

N.B. First-order logic was introduced in more detail in Inf1A Computation
& Logic. Here, we use different notation for the connectives: ¬ for not;
∧ for and; ∨ for or; and ⇒ for →. Our notation agrees with

Ramakrishnan & Gehrke “Database Management Systems”. The main
difference from standard first-order logic is the use of variables ranging over
tuples (rather than individuals), and the correspondingly specialised forms
of atomic formula.
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A subtle point

In ordinary first-order logic, one can, in theory, form quantifications ∃R. p

and ∀R. p even when R does not occur in p. (In practice, such
quantifications are normally useless since they are vacuous.)

In tuple-relational calculus we only allow ∃R. p and ∀R. p when R

occurs free in p for the following reason.

• Under this rule, every tuple variable R that appears in a formula is
forced to appear in at least one atomic subformula. The atomic
formulae in which R appears then determine the schema of R. The
schema is taken to be the smallest one containing all the fields that are
declared as attributes of R within the formula itself.
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Illustrative example

An example illustrating the previous point.

{P | ∃S ∈ Students (S.age > 20 ∧ P.name = S.name

∧ P.age = S.age)}

• The schema of S is that of the Students table. This is declared by
the atomic formula S ∈ Students.

• The schema of P has just two fields name and age, with the same
types as the corresponding fields in Students.

• The query returns a table with two fields name and age containing the
names and ages of all students aged 21 or over.

Note the use of ∃S ∈ Students (p) for ∃S (S ∈ Students ∧ p).
We make free use of such (standard) abbreviations.
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Further examples (1)

Query: Find the names of students who are taking Informatics 1

Relational algebra:

πStudents.name(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code (σname=‘Informatics 1’(Courses))))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

(C.name = ‘Informatics 1’ ∧ C.code = T.code ∧
S.mn = T.mn ∧ P.name = S.name)}
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Tree representation of algebraic expression (abstract syntax)

For the previous query, changing the bracketing does not change the query.

πStudents.name((Students ./Students.mn=Takes.mn Takes)

./Takes.code=Courses.code (σname=‘Informatics 1’(Courses)) )

A tree representation can help one visualise a relational algebra query.

Students Takes

⋈Students.mn = Takes.mn

⋈Takes.code = Courses.code

πStudents.name

σname=’Informatics 1’

Courses
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Further examples (2)

Query: Find the names of all courses taken by (everyone called) Joe

Relational algebra:

πCourses.name((σname=’Joe’(Students)) ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code Courses))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

(S.name = ‘Joe’ ∧ S.mn = T.mn ∧
C.code = T.code ∧ P.name = C.name)}
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Further examples (3)

Query: Find the names of all students who are taking Informatics 1 or
Geology 1

Relational algebra:

πStudents.name(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Informatics 1’∨name=‘Geology 1’(Courses))))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

((C.name = ‘Informatics 1’ ∨ C.name = ’Geology 1’) ∧
C.code = T.code ∧ S.mn = T.mn ∧ P.name = S.name)}
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Further examples (4)

Query: Find the names of students who are taking both Informatics 1 and
Geology 1

Relational algebra:

πStudents.name(

(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Informatics 1’(Courses))))

∩
(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Geology 1’(Courses)))) )
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Further examples (4 continued)

Query: Find the names of students who are taking both Informatics 1 and
Geology 1

Tuple-relational calculus:

{P | ∃S ∈ Students (P.name = S.name ∧
∀C ∈ Courses

((C.name = ‘Informatics 1’ ∨ C.name = ‘Geology 1’) ⇒
(∃T ∈ Takes (T.mn = S.mn ∧ T.code = C.code)))) }

Exercise. What does this query return in the case that there is no course in
Courses called ‘Geology 1’? Find a way of rewriting the query so that it
only returns an answer if both ‘Informatics 1’ and ‘Geology 1’ courses exist.
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Further examples (5)

Query: Find the names of all students who are taking all courses

Tuple-relational calculus:

{P | ∃S ∈ Students (P.name = S.name ∧
∀C ∈ Courses

(∃T ∈ Takes (T.mn = S.mn ∧ T.code = C.code))) }

Exercise. Try to write this query in relational algebra.
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Relational algebra and tuple-relational calculus compared

Relational algebra (RA) and tuple-relational calculus (TRC) have the same
expressive power

That is, if a query can be expressed in RA, then it can be expressed in TRC,
and vice-versa

Why is it useful to have both approaches?
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Declarative versus procedural

Recall that TRC is declarative and RA is procedural.

This suggests the following methodology.

• Specify the data that needs to be retrieved using TRC.

• Translate this to an equivalent query in RA that gives an efficient
method of retrieving the data.

This methodology underpins practical approaches to query optimisation in
relational databases.

In practice, queries are written in a real-world query language such as SQL,
rather than TRC.

Nevertheless, query optimisation is of enormous importance in applications.
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Part I — Structured Data

Data Representation:

I.1 The entity-relationship (ER) data model

I.2 The relational model

Data Manipulation:

I.3 Relational algebra

I.4 Tuple-relational calculus

I.5 The SQL query language

Required reading: Chapter 5 of [DMS]: §§ 5.1,5.2,5.3,5.5,5.6
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A brief history

SQL stands for Structured Query Language

Originally developed at IBM in SEQUEL-XRM and System-R projects
(1974–77)

Caught on very rapidly

Currently, most widely used commercial relational database language

Continues to evolve in response to changing needs. (Adopted as a standard
by ANSI in 1986, ratified by ISO 1987, revised: 1989, 1992, 1999, 2003,
2006, 2008!)

Pronounced S. Q. L.
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Data Manipulation Language

In note 2 we met the SQL Data Definition Language (DDL), which is used
to define relational schemata.

This lecture introduces the Data Manipulation Language (DML)

The DML allows users to:

• insert, delete and modify rows

• query the database

Note. SQL is a large and complex language. The purpose of this lecture is
to introduce some of the basic and most important query forms, sufficient
for expressing the kinds of query already considered in relational algebra
and tuple-relational calculus. (SQL is currently covered in more detail in
the third-year “Database Systems” course.)
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Inserting data
Assume a table Students with schema:

Students (mn:char(8), name:char(20),

age:integer, email:char(15))

Insert data using:

INSERT

INTO Students (mn, name, age, email)

VALUES (’s0765432’, ’Bob’, 19, ’bob@sms’)

Although SQL allows the list of column names to be omitted from the
INTO clause (SQL merely requires the tuple of values to be presented in the
correct order), it is considered good style to write this list explicitly.

One reason for this is that it means the INSERT command can be
understood without separate reference to the schema declaration.
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Deleting data

Delete all students called Bob from Students.

DELETE

FROM Students S

WHERE S.name = ’Bob’

Updating data

Rename student ‘s0765432’ Bobby.

UPDATE Students S

SET S.name = ’Bobby’

WHERE S.mn = ’s0765432’

Part I: Structured Data I.5: The SQL query language



Inf1, Data & Analysis, 2009 I: 94 / 114

Form of a basic SQL query

SELECT [DISTINCT] select-list

FROM from-list

WHERE qualifications

• The SELECT clause specifies columns to be retained in the result.
(N.B., it performs a projection rather than a selection.)

• The FROM clause specifies a cross-product of tables.

• The WHERE clause specifies selection conditions on the rows of the
table obtained via the FROM clause

• The SELECT and FROM clauses are required, the WHERE clause is
optional.
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A simple example

Query: Find all students at least 19 years old

SELECT *

FROM Students S

WHERE S.age > 18

This returns all rows in the Students table satisfying the condition.

Alternatively, one can be explicit about the fields.

SELECT S.mn, S.name, S.age, S.email

FROM Students S

WHERE S.age > 18

The first approach is useful for interactive querying. The second is
preferable for queries that are to be reused and maintained since the schema
of the result is made explicit in the query itself.
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A simple example continued

Query: Find the names and ages of all students at least 19 years old

SELECT S.name, S.age

FROM Students S

WHERE S.age > 18

This query returns a table with one row (with the specified fields) for each
student in the Students table whose age is 19 years or over.

SELECT DISTINCT S.name, S.age

FROM Students S

WHERE S.age > 18

This differs from the previous query in that only distinct rows are returned.
If more than one student have the same name and age (> 18 years) then the
corresponding name-age pair will be included only once in the output table.
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Query syntax in detail

• The from-list in the FROM clause is a list of tables. A table name can be
followed by a range variable; e.g., S in the queries above.

• The select-list in the SELECT clause is a list of (expressions involving)
column names from the tables named in the from-list. Column names
can be prefixed by range variables.

• The qualification in the WHERE clause is a boolean combination (built
using AND, OR, and NOT) of conditions of the form exp op exp, where
op ∈ {<, =, >, <=, <>, >=, } (the last three stand for ≤, 6=, ≥
respectively), and exp is a column name, a constant, or an
arithmetic/string expression.

• The DISTINCT keyword is optional. It indicates that the table
computed as an answer to the query should not contain duplicate rows.
The default is that duplicate rows are not eliminated.
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The meaning of a query

A query computes a table whose contents can be understood via the
following conceptual evaluation strategy for computing the table.

1. Compute the cross-product of the tables in the from-list.

2. Delete rows in the cross-product that fail the qualification condition.

3. Delete all columns that do not appear in the select-list.

4. If DISTINCT is specified, eliminate duplicate rows.

This is a conceptual evaluation strategy in the sense that it determines the
answer to the query, but would be inefficient to follow in practice.
Real-world database management systems use query optimisation
techniques (based on relational algebra!) to find more efficient strategies for
evaluating queries.

Part I: Structured Data I.5: The SQL query language



Inf1, Data & Analysis, 2009 I: 99 / 114

Diversion: multisets

The sensitivity of SQL to duplicate rows in tables means that SQL models a
table as a multiset of rows, rather than as a set of rows. (In contrast, in the
relational model, a table is simply a relation, which is just a set of tuples.)

A multiset (sometimes called a bag) is like a set except that it is sensitive to
multiplicities, i.e., to the number of times a value appears inside it.

For example, the following define the same set, but are different multisets:

{2, 3, 5} {2, 3, 3, 5} {2, 3, 3, 5, 5, 5} {2, 2, 2, 3, 3, 5}

Although multisets are sensitive to multiplicities, they are not sensitive to
the order in which values are given.

For example, the following define the same multiset.

{2, 3, 3, 5} {3, 2, 5, 3} {5, 3, 3, 2}
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Example tables

mn name age email

s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

Students

code name year

inf1 Informatics 1 1

math1 Mathematics 1 1

Courses

mn code mark

s0412375 inf1 80

s0378435 math1 70

Takes
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Example query (1)

Query: Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’
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Example query (1 continued)

Query: Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 1 of conceptual evaluation constructs the cross-product of Students,
Takes and Courses.

For the example tables, this has 16 rows and 10 columns. (The columns are:
S.mn, S.name, S.age, S.email, T.mn, T.code, T.mark, C.code,
C.name, C.year.)
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Example query (1 continued)

Query: Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 2 of conceptual evaluation selects the rows satisfying the condition:

S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

For the example tables, this has just 1 row (and still 10 columns).

Part I: Structured Data I.5: The SQL query language



Inf1, Data & Analysis, 2009 I: 104 / 114

Example query (1 continued)

Query: Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 3 of conceptual evaluation eliminates all columns except S.name.

For the example tables, this produces the table Mary

Step 4 of conceptual evaluation does not apply since DISTINCT is not
specified. (If DISTINCT were specified it would not change the result for
our example tables, but it would for other choices of data.)
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Example query (2)

Query: Find the names of all courses taken by (everyone called) Mary.

SELECT C.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND S.name = ’Mary’
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Example query (3)

Query: Find the names of all students who are taking Informatics 1 or
Mathematics 1.

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code AND

(C.name=’Informatics 1’ OR C.name=’Mathematics 1’)
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Example query (3 continued)

Query: Find the names of all students who are taking Informatics 1 or
Mathematics 1.

SELECT S1.name

FROM Students S1, Takes T1, Courses C1

WHERE S1.mn = T1.mn AND T1.code = C1.code

AND C1.name = ’Informatics 1’

UNION

SELECT S2.name

FROM Students S2, Takes T2, Courses C2

WHERE S2.mn = T2.mn AND T2.code = C2.code

AND C2.name = ’Mathematics 1’
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Example query (4)

Query: Find the names of all students who are taking both Informatics 1
and Mathematics 1.

SELECT S.name

FROM Students S, Takes T1, Courses C1,

Takes T2, Courses C2,

WHERE S.mn = T1.mn AND T1.code = C1.code

AND S.mn = T2.mn AND T2.code = C2.code

AND C1.name = ’Informatics 1’

AND C2.name = ’Mathematics 1’

This is complicated, somewhat counterintuitive (and also inefficient!)
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Example query (5)

Query: Find the matriculation numbers and names of all students who are
taking both Informatics 1 and Mathematics 1.

SELECT S1.mn, S1.name

FROM Students S1, Takes T1, Courses C1

WHERE S1.mn = T1.mn AND T1.code = C1.code

AND C1.name = ’Informatics 1’

INTERSECT

SELECT S2.mn, S2.name

FROM Students S2, Takes T2, Courses C2

WHERE S2.mn = T2.mn AND T2.code = C2.code

AND C2.name = ’Mathematics 1’
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Example query (6)

Query: Find the matriculation numbers and names of of all students who are
taking Informatics 1 but not Mathematics 1.

SELECT S1.mn, S1.name

FROM Students S1, Takes T1, Courses C1

WHERE S1.mn = T1.mn AND T1.code = C1.code

AND C1.name = ’Informatics 1’

EXCEPT

SELECT S2.mn, S2.name

FROM Students S2, Takes T2, Courses C2

WHERE S2.mn = T2.mn AND T2.code = C2.code

AND C2.name = ’Mathematics 1’
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Example query (7)

Query: Find all pairs of matriculation numbers such that the first student in
the pair obtained a higher mark than the second student in Informatics 1.

SELECT S1.mn, S2.mn

FROM Students S1, Takes T1, Courses C,

Students S2, Takes T2

WHERE S1.mn = T1.mn AND T1.code = C.code

AND S2.mn = T2.mn AND T2.code = C.code

AND C.name = ’Informatics 1’

AND T1.mark > T2.mark
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Aggregate operators

In addition to retrieving data, we often want to perform computation over
data.

SQL includes five useful aggregate operations, which can be applied on any
column, say A, of a table.

1. COUNT ([DISTINCT] A): The number of [distinct] values in the A
column.

2. SUM ([DISTINCT] A): The sum of all [distinct] values in the A
column.

3. AVG ([DISTINCT] A): The average of all [distinct] values in the A
column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.
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Example query (8)

Query: Find the number of students taking Informatics 1.

SELECT COUNT(T.mn)

FROM Takes T, Courses C

WHERE T.code = C.code AND C.name = ’Informatics 1’

Example query (9)

Query: Find the average mark in Informatics 1.

SELECT AVG(T.mark)

FROM Takes T, Courses C

WHERE T.code = C.code AND C.name = ’Informatics 1’
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Beyond this lecture

There are many topics we haven’t covered:

• Nested queries

• The GROUP BY and HAVING clauses

• Treatment of NULL values

• Complex integrity constraints

• Triggers

These are treated in some detail in Chapter 5 of Ramakrishnan & Gehrke’s
“Database Management Systems”.

Knowledge of these topics is not required for Informatics 1.
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