
Inf1B, Data & Analysis, 2008 6.1 / 24

Informatics 1B, 2008
School of Informatics, University of Edinburgh

Data and Analysis

Note 6
Semistructured Data and XML

Alex Simpson

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.2 / 24

Part II — Semistructured Data

XML

Note 6 Semistructured data and XML

Note 7 Querying XML documents with XQuery

Corpora

Note 8 Introduction to corpora

Note 9 Building a corpus

Note 10 Querying a corpus

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.3 / 24

Background

Relational databases record data in tables conforming to relational
schemata. This imposes rigid structure on data

In many situations, it is useful to structure data in a less rigid way; for
example:

• when the data needs to be made publicly available in a standard and
easily readable data format;

• when we wish to mark up (i.e. annotate) existing unstructured data (e.g.
text) with additional information (e.g. semantic information);

• when the data possesses a natural hierarchical structure and/or the
structure of the data we wish to record varies from item to item.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.4 / 24

Extensible Markup Language (XML)

This is a markup language, that is it provides a mechanism, based on
elements (also called tags), for annotating (marking up) ordinary text with
additional information.

It was developed in the mid 1990’s from the Standard General Markup
Language (SGML) and Hypertext Markup Language (HTML).

XML has a simple text-based format which provides a convenient basis for
making data widely available, e.g. over the web. Indeed, XML has become
the de facto standard for publishing data on the web.

Structured data (stored locally in a relational database) is often translated
into XML for web publishing (even though this means losing some of the
structure). (Cf. Tutorial 4.)

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.5 / 24

Semistructured data

The rules governing XML elements impose a loose structure on data, hence
the term semistructured data.

The principal structure that XML imposes is a tree structure on elements.

Such a tree structure can be captured (independently of XML) using a
tree-based semistructured data model.

The next slide illustrates one such model.

The example, a fragment of a gazetter, is chosen because it is one that is
naturally accommodated within a hierarchical tree-based structure.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.6 / 24

Example of a tree-based semistructured data model

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.7 / 24

Understanding the tree model

The data is stored at the leaves of the tree.

Each internal node of the tree (one that is not a leaf) is given a label that
categorises the information that appears in the tree beneath the node.

The meaning of the data at a leaf depends on the labels that appear along the
path from the root of the tree (labelled Gazetteer) to the leaf.

Similarly, the meaning of an internal node depends on the path to the node
from the root of the tree. (Note, e.g., that the label Name is used in two
different ways.)

The next slide presents the same structure (with some additional
information) in XML format.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.8 / 24

<Gazetteer>

<!-- illustrative fragment of data -->

<Country>

<Name>Slovenia</Name>

<Population>2,020,000</Population>

<Capital>Ljubljana</Capital>

<Region>

<Name>Gorenjska</Name>

<Feature type="Lake">Bohinj</Feature>

<Feature type="Mountain">Triglav</Feature>

<Feature type="Mountain">Špik</Feature>

</Region>

</Country>

</Gazetteer>

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.9 / 24

XML Elements

Elements (also called tags) are the building blocks of XML documents.

The start of the content of an element elm is marked with the start tag
<elm>, and the end of the content is marked with the end tag </elm>.

In the example, the element Gazetteer encloses all information in the
document. It is the root element.

Elements must be properly nested. Thus,

<Country><Region> ... </Region></Country>

is legal, whereas

<Country><Region> ... </Country></Region>

is illegal.

Elements are case sensitive, so Region is different from REGION

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.10 / 24

Relating XML and the tree model

The existence of a root element together with the proper nesting of elements
ensures that every XML document carries a tree structure in a natural way:

• Note that each element of the XML document corresponds to an
individual internal node of the tree.

There are some discrepancies between the XML document and tree model:

• In the XML document, elements appear in a certain order (since it is a
text document). The tree model is traditionally not assumed to have an
ordering on its nodes (though it would be perfectly possible to make
such an assumption).

• There is additional information in the XML document (e.g. the value of
attributes) that is not present in the associated tree model as we have
presented it. (This can be addressed by adapting the tree model.)

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.11 / 24

Attributes

An element can have descriptive attributes that provide additional
information about the element. For example,

<Feature type="Mountain">

sets the attribute type of the element Feature to have value Mountain.

Note that attribute values are enclosed in (double) quotation marks.

It is possible for one element to have several different attributes, with values
defined in sequence within the start tag, e.g.

<elm attr1="value1" attr2="value2" attr3="value3">

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.12 / 24

Entity references

These are references to external data, or special characters or text. An entity
reference starts with the symbol & and ends with the symbol ;. In the
example, the entity reference Š is a reference to the Unicode
character Š which begins the mountain name Špik.

Comments

Comments can be inserted anywhere in an XML document. Comments start
with <!-- and end with -->. They can contain arbitrary text apart from
the string --.

Data content

The data content of the XML document is included as text between the
XML tags. Note that all data is text. XML does not have a type structure.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.13 / 24

Well-formed documents

An XML document is well-formed if it conforms to three guidelines:

• It starts with an XML declaration. The example document does not! A
suitable such declaration would be:

<?xml version="1.0" encoding="UTF-8"?>

This declares the XML version, and states that UTF-8 character
encoding is to be used for Unicode. (This is not Inf1B examinable. In
Data & Analysis, we are interested in the content of a document not in
its declaration.)

• It has a root element that contains all other elements.

• All elements are properly nested.

These are minimal requirements on a document. Often there will be other
constraints we wish to impose.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.14 / 24

Document Type Declarations (DTDs)

A DTD is a set of rules that allows us to specify the desired structure of an
XML document. Using a DTD we can specify:

• The elements and entities that can appear in a document.

• What the attributes of the elements are.

• The relationship between different elements including the order of
appearance and how they are nested.

An XML document that is structured according to the rules of an associated
DTD is called valid.

We illustrate DTDs by giving an example DTD for the Gazetteer XML
document of slide 6.8.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.15 / 24

Example DTD

<!DOCTYPE Gazetteer [

<!ELEMENT Gazetteer (Country)*>

<!ELEMENT Country (Name,Population,Capital,Region*)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Population (#PCDATA)>

<!ELEMENT Capital (#PCDATA)>

<!ELEMENT Region (Name,Feature+)>

<!ELEMENT Feature (#PCDATA)>

<!ATTLIST Feature type (Town|Mountain|Lake) #REQUIRED>

]>

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.16 / 24

Understanding the example DTD (1)

A DTD has the form:

<!DOCTYPE name [DTDdeclaration]>

where:

• name is the name of the outermost enclosing tag

• DTDdeclaration contains the rules of the DTD

The DTD declaration has rules for each of the elements that can appear in
any XML document matching the DTD.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.17 / 24

Understanding the example DTD (2)

The DTD declaration begins with a rule for the outermost element (the root
element).

In the example:

<!ELEMENT Gazetteer (Country)*>

This states that the Gazetteer element consists of zero or more
Country elements.

Next we have to give rules for the Country element itself.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.18 / 24

Understanding the example DTD (3)

The Country element is specified by:

<!ELEMENT Country (Name,Population,Capital,Region*)>

This states that a Country element consists of: one Name element,
followed by one Population element, followed by one Capital
element, followed by zero or more Region elements.

The Name element is specified by:

<!ELEMENT Name (#PCDATA)>

This states that the Name element contains text (i.e. data). The keyword
#PCDATA abbreviates “parsed character data”.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.19 / 24

Understanding the example DTD (4)

The Region element is specified by:

<!ELEMENT Region (Name,Feature+)>

This states that a Region element consists of: one Name, followed by one
or more Feature elements.

The Feature element has two declarations:

<!ELEMENT Feature (#PCDATA)>

<!ATTLIST Feature type (Town|Mountain|Lake) #REQUIRED>

The first states that it has text content. The second states that it has an
attribute type that can take one of three values, Town, Mountain or
Lake. Moreover, it is required that every Feature element must specify a
value for the type attribute.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.20 / 24

Format of element type declaration

An element type declaration has the structure:

<!ELEMENT name (contentType)>

There are five possible content types:

• Another element

• #PCDATA indicating text content

• EMPTY indicating that the element has no content. (Elements with no
content are not required to have an end tag.)

• ANY indicating that any content is permitted. (This disables all
checking of document structure inside the element.)

• A regular expression constructed from the above

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.21 / 24

Format of regular expressions

Regular expressions were introduced in Informatics 1A Computation and
Logic.

DTDs make use of the following format for regular expressions.

• exp1, exp2 : first exp1 then exp2 in sequence.

• exp* : zero or more occurrences of exp.

• exp? : zero or one occurrences of exp.

• exp+ : one or more occurrences of exp.

• exp1|exp2 : either exp1 or exp2.

Question: Which of these regular expression forms are used in element type
declarations in the example DTD on slide 6.8?

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.22 / 24

Format of attribute declarations

The attributes of an element are declared separately to the element
declaration. The format is:

<!ATTLIST elementName (attName attType default)+>

This declares a list of at least one attribute for the element elementName.

For each entry in the list:

• attName is the attribute name

• attType is a type for the value of the attribute.

The example, (Town|Mountain|Lake) is an enumerated type
which specifies three possible values (see slide 6.19).

An alternative is the string type, CDATA, which allows any string value.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.23 / 24

Format of attribute declarations (continued)

• default allows a default value to be specified, to be assigned in case
a start tag for the element does not specify a value for the attribute.

For example,

<!ATTLIST Feature type (Town|Mountain|Lake) "Town">

specifies that if start the tag <Feature> appears, in which no value
for the type attribute is explicitly stated, then the attribute is given the
default value "Town".

Alternatively, as in the example on slide 6.15, if the keyword
#REQUIRED is used for default then every start tag for the element
is required to explicitly specify a value for the attribute.

Note 6 Semistructured data and XML

Inf1B, Data & Analysis, 2008 6.24 / 24

Limitations of DTDs

One of the strengths of the DTD mechanism is its essential simplicity.

However, it is inexpressive in several ways, and this limits its usefulness.
Three particular weaknesses are:

• Elements and attributes cannot be assigned useful types.

• It is impossible to place constraints on data values.

• Elements are always ordered even if this is inappropriate to the
application.

These issues and others have been dealt with through the development of
more powerful, but more complex, XML format languages, such as XML
Schema (which lie beyond the scope of Informatics 1B.)

Note 6 Semistructured data and XML

