
Inf1B, Data & Analysis, 2008 5.1 / 28

Informatics 1B, 2008
School of Informatics, University of Edinburgh

Data and Analysis

Note 5
The SQL Query Language

Alex Simpson

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.2 / 28

Part I — Structured Data

Data Representation:

Note 1 The entity-relationship (ER) data model

Note 2 The relational model

Data Manipulation:

Note 3 Relational algebra

Note 4 Tuple-relational calculus

Note 5 The SQL query language

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.3 / 28

A brief history

SQL stands for Structured Query Language

Originally developed at IBM in SEQUEL-XRM and System-R projects
(1974–77)

Caught on very rapidly

Currently, most widely used commercial relational database language

Continues to evolve in response to changing needs. (Adopted as a standard
by ANSI in 1986, ratified by ISO 1987, revised: 1989, 1992, 1999, 2003,
2006!)

Pronounced S. Q. L.

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.4 / 28

Data Manipulation Language

In note 2 we met the SQL Data Definition Language (DDL), which is used
to define relational schemata.

This lecture introduces the Data Manipulation Language (DML)

The DML allows users to:

• insert, delete and modify rows

• query the database

Note. SQL is a large and complex language. The purpose of this lecture is
to introduce some of the basic and most important query forms, sufficient
for expressing the kinds of query already considered in relational algebra
and tuple-relational calculus. (SQL is currently covered in more detail in
the third-year “Database Systems” course.)

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.5 / 28

Inserting data
Assume a table Students with schema:

Students (mn:char(8), name:char(20),

age:integer, email:char(15))

Insert data using:

INSERT

INTO Students (mn, name, age, email)

VALUES (’s0765432’, ’Bob’, 19, ’bob@sms’)

Although SQL allows the list of column names to be omitted from the
INTO clause (SQL merely requires the tuple of values to be presented in the
correct order), it is considered good style to write this list explicitly.

One reason for this is that it means the INSERT command can be
understood without separate reference to the schema declaration.

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.6 / 28

Deleting data

Delete all students called Bob from Students.

DELETE

FROM Students S

WHERE S.name = ’Bob’

Updating data

Rename student ‘s0765432’ Bobby.

UPDATE Students S

SET S.name = ’Bobby’

WHERE S.mn = ’s0765432’

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.7 / 28

Form of a basic SQL query

SELECT [DISTINCT] select-list

FROM from-list

WHERE qualifications

• The SELECT clause specifies columns to be retained in the result.
(N.B., it performs a projection rather than a selection.)

• The FROM clause specifies a cross-product of tables.

• The WHERE clause specifies selection conditions on the rows of the
table obtained via the FROM clause

• The SELECT and FROM clauses are required, the WHERE clause is
optional.

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.8 / 28

A simple example

Query: Find all students at least 19 years old

SELECT *

FROM Students S

WHERE S.age > 18

This returns all rows in the Students table satisfying the condition.

Alternatively, one can be explicit about the fields.

SELECT S.mn, S.name, S.age, S.email

FROM Students S

WHERE S.age > 18

The first approach is useful for interactive querying. The second is
preferable for queries that are to be reused and maintained since the schema
of the result is made explicit in the query itself.

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.9 / 28

A simple example continued

Query: Find the names and ages of all students at least 19 years old

SELECT S.name, S.age

FROM Students S

WHERE S.age > 18

This query returns a table with one row (with the specified fields) for each
student in the Students table whose age is 19 years or over.

SELECT DISTINCT S.name, S.age

FROM Students S

WHERE S.age > 18

This differs from the previous query in that only distinct rows are returned.
If more than one student have the same name and age (> 18 years) then the
corresponding name-age pair will be included only once in the output table.

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.10 / 28

Query syntax in detail

• The from-list in the FROM clause is a list of tables. A table name can be
followed by a range variable; e.g., S in the queries above.

• The select-list in the SELECT clause is a list of (expressions involving)
column names from the tables named in the from-list. Column names
can be prefixed by range variables.

• The qualification in the WHERE clause is a boolean combination (built
using AND, OR, and NOT) of conditions of the form exp op exp, where
op ∈ {<, =, >, <=, <>, >=, } (the last three stand for ≤, 6=, ≥
respectively), and exp is a column name, a constant, or an
arithmetic/string expression.

• The DISTINCT keyword is optional. It indicates that the table
computed as an answer to the query should not contain duplicate rows.
The default is that duplicate rows are not eliminated.

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.11 / 28

The meaning of a query

A query computes a table whose contents can be understood via the
following conceptual evaluation strategy for computing the table.

1. Compute the cross-product of the tables in the from-list.

2. Delete rows in the cross-product that fail the qualification condition.

3. Delete all columns that do not appear in the select-list.

4. If DISTINCT is specified, eliminate duplicate rows.

This is a conceptual evaluation strategy in the sense that it determines the
answer to the query, but would be inefficient to follow in practice.
Real-world database management systems use query optimisation
techniques (based on relational algebra!) to find more efficient strategies for
evaluating queries.

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.12 / 28

Diversion: multisets

The sensitivity of SQL to duplicate rows in tables means that SQL models a
table as a multiset of rows, rather than as a set of rows. (In contrast, in the
relational model, a table is simply a relation, which is just a set of tuples.)

A multiset (sometimes called a bag) is like a set except that it is sensitive to
multiplicities, i.e., to the number of times a value appears inside it.

For example, the following define the same set, but are different multisets:

{2, 3, 5} {2, 3, 3, 5} {2, 3, 3, 5, 5, 5} {2, 2, 2, 3, 3, 5}

Although multisets are sensitive to multiplicities, they are not sensitive to
the order in which values are given.

For example, the following define the same multiset.

{2, 3, 3, 5} {3, 2, 5, 3} {5, 3, 3, 2}

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.13 / 28

Example tables

mn name age email

s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

Students

code name year

inf1 Informatics 1 1

math1 Mathematics 1 1

Courses

mn code mark

s0412375 inf1 80

s0378435 math1 70

Takes

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.14 / 28

Example query (1)

Query: Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.15 / 28

Example query (1 continued)

Query: Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 1 of conceptual evaluation constructs the cross-product of Students,
Takes and Courses.

For the example tables, this has 16 rows and 10 columns. (The columns are:
S.mn, S.name, S.age, S.email, T.mn, T.code, T.mark, C.code,
C.name, C.year.)

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.16 / 28

Example query (1 continued)

Query: Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 2 of conceptual evaluation selects the rows satisfying the condition:

S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

For the example tables, this has just 1 row (and still 10 columns).

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.17 / 28

Example query (1 continued)

Query: Find the names of all students who are taking Informatics 1

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND C.name = ’Informatics 1’

Step 3 of conceptual evaluation eliminates all columns except S.name.

For the example tables, this produces the table Mary

Step 4 of conceptual evaluation does not apply since DISTINCT is not
specified. (If DISTINCT were specified it would not change the result for
our example tables, but it would for other choices of data.)

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.18 / 28

Example query (2)

Query: Find the names of all courses taken by (everyone called) Mary.

SELECT C.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code

AND S.name = ’Mary’

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.19 / 28

Example query (3)

Query: Find the names of all students who are taking Informatics 1 or
Mathematics 1.

SELECT S.name

FROM Students S, Takes T, Courses C

WHERE S.mn = T.mn AND T.code = C.code AND

(C.name=’Informatics 1’ OR C.name=’Mathematics 1’)

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.20 / 28

Example query (3 continued)

Query: Find the names of all students who are taking Informatics 1 or
Mathematics 1.

SELECT S1.name

FROM Students S1, Takes T1, Courses C1

WHERE S1.mn = T1.mn AND T1.code = C1.code

AND C1.name = ’Informatics 1’

UNION

SELECT S2.name

FROM Students S2, Takes T2, Courses C2

WHERE S2.mn = T2.mn AND T2.code = C2.code

AND C2.name = ’Mathematics 1’

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.21 / 28

Example query (4)

Query: Find the names of all students who are taking both Informatics 1
and Mathematics 1.

SELECT S.name

FROM Students S, Takes T1, Courses C1,

Takes T2, Courses C2,

WHERE S.mn = T1.mn AND T1.code = C1.code

AND S.mn = T2.mn AND T2.code = C2.code

AND C1.name = ’Informatics 1’

AND C2.name = ’Mathematics 1’

This is complicated, somewhat counterintuitive (and also inefficient!)

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.22 / 28

Example query (5)

Query: Find the matriculation numbers and names of all students who are
taking both Informatics 1 and Mathematics 1.

SELECT S1.mn, S1.name

FROM Students S1, Takes T1, Courses C1

WHERE S1.mn = T1.mn AND T1.code = C1.code

AND C1.name = ’Informatics 1’

INTERSECT

SELECT S2.mn, S2.name

FROM Students S2, Takes T2, Courses C2

WHERE S2.mn = T2.mn AND T2.code = C2.code

AND C2.name = ’Mathematics 1’

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.23 / 28

Example query (6)

Query: Find the matriculation numbers and names of of all students who are
taking Informatics 1 but not Mathematics 1.

SELECT S1.mn, S1.name

FROM Students S1, Takes T1, Courses C1

WHERE S1.mn = T1.mn AND T1.code = C1.code

AND C1.name = ’Informatics 1’

EXCEPT

SELECT S2.mn, S2.name

FROM Students S2, Takes T2, Courses C2

WHERE S2.mn = T2.mn AND T2.code = C2.code

AND C2.name = ’Mathematics 1’

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.24 / 28

Example query (7)

Query: Find all pairs of matriculation numbers such that the first student in
the pair obtained a higher mark than the second student in Informatics 1.

SELECT S1.mn, S2.mn

FROM Students S1, Takes T1, Courses C,

Students S2, Takes T2

WHERE S1.mn = T1.mn AND T1.code = C.code

AND S2.mn = T2.mn AND T2.code = C.code

AND C.name = ’Informatics 1’

AND T1.mark > T2.mark

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.25 / 28

Aggregate operators

In addition to retrieving data, we often want to perform computation over
data.

SQL includes five useful aggregate operations, which can be applied on any
column, say A, of a table.

1. COUNT ([DISTINCT] A): The number of [distinct] values in the A
column.

2. SUM ([DISTINCT] A): The sum of all [distinct] values in the A
column.

3. AVG ([DISTINCT] A): The average of all [distinct] values in the A
column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.26 / 28

Example query (8)

Query: Find the number of students taking Informatics 1.

SELECT COUNT(T.mn)

FROM Takes T, Courses C

WHERE T.code = C.code AND C.name = ’Informatics 1’

Example query (9)

Query: Find the average mark in Informatics 1.

SELECT AVG(T.mark)

FROM Takes T, Courses C

WHERE T.code = C.code AND C.name = ’Informatics 1’

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.27 / 28

Beyond this lecture

There are many topics we haven’t covered:

• Nested queries

• The GROUP BY and HAVING clauses

• Treatment of NULL values

• Complex integrity constraints

• Triggers

These are treated in some detail in Chapter 5 of Ramakrishnan & Gehrke’s
“Database Management Systems”.

Knowledge of these topics is not required for Informatics 1B.

Note 5 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 5.28 / 28

. . . and finally

Congratulations!

You have survived structured data!

Note 5 Tuple-relational calculus


