
Inf1B, Data & Analysis, 2008 4.1 / 18

Informatics 1B, 2008
School of Informatics, University of Edinburgh

Data and Analysis

Note 4
Tuple-relational Calculus

Alex Simpson

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.2 / 18

Part I — Structured Data

Data Representation:

Note 1 The entity-relationship (ER) data model

Note 2 The relational model

Data Manipulation:

Note 3 Relational algebra

Note 4 Tuple-relational calculus

Note 5 The SQL query language

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.3 / 18

Motivation

Tuple-relational calculus is another way of writing queries for relational
data.

Its power lies in the fact that it is entirely declarative

That is, we specify the properties of the data we are interested in retrieving,
but (in contrast to relational algebra) we do not describe a method by which
the data can be retrieved

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.4 / 18

Basic format

Queries are based on tuple variables.

Each tuple variable has an associated schema. The variable ranges over all
possible tuples of values matching the schema declaration.

A query has the form

{T | p(T )}

where T is a tuple variable and p(T ) is a (first-order logic) formula (in
which the tuple variable T occurs free).

The result of this query is the set of all possible tuples t (consistent with the
schema of T ) for which the formula p(T ) evaluates to true with T = t

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.5 / 18

Simple example

Find all students at least 19 years old

{S | S ∈ Students ∧ S.age > 18}

In detail:

• Tuple variable S is introduced

• S instantiated over all tuples in the Students table

• Predicate S.age > 18 is evaluated on each individual tuple

• If and only if the predicate evaluates to true, the tuple is propagated to
the output

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.6 / 18

Formal syntax of atomic formulae

An atomic formula is one of the following:

• R ∈ Rel

• R.a op S.b

• R.a op constant

• constant op S.b

where: R, S are tuple variables, Rel is a relation name, a, b are attributes of
R, S respectively, and op is any operator in the set {>, <, =, 6=, ≥, ≤}

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.7 / 18

Formal syntax of (composite) formulae

A formula is (recursively defined) to be one of the following:

• any atomic formula

• ¬p, p ∧ q, p ∨ q, p ⇒ q

• ∃R. p(R), ∀R. p(R)

where p(R) denotes a formula in which the variable R appears free.

N.B. First-order logic was introduced in more detail in Inf1A Computation
& Logic. Here, we use different notation for the connectives: ¬ for not;
∧ for and; ∨ for or; and ⇒ for →. Our notation agrees with

Ramakrishnan & Gehrke “Database Management Systems”. The main
difference from standard first-order logic is the use of variables ranging over
tuples (rather than individuals), and the correspondingly specialised forms
of atomic formula.

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.8 / 18

A subtle point

In ordinary first-order logic, one can, in theory, form quantifications ∃R. p

and ∀R. p even when R does not occur in p. (In practice, such
quantifications are normally useless since they are vacuous.)

In tuple-relational calculus we only allow ∃R. p and ∀R. p when R

occurs free in p for the following reason.

• Under this rule, every tuple variable R that appears in a formula is
forced to appear in at least one atomic subformula. The atomic
formulae in which R appears then determine the schema of R. The
schema is taken to be the smallest one containing all the fields that are
declared as attributes of R within the formula itself.

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.9 / 18

Illustrative example

An example illustrating the previous point.

{P | ∃S ∈ Students (S.age > 20 ∧ P.name = S.name

∧ P.age = S.age)}

• The schema of S is that of the Students table. This is declared by
the atomic formula S ∈ Students.

• The schema of P has just two fields name and age, with the same
types as the corresponding fields in Students.

• The query returns a table with two fields name and age containing the
names and ages of all students aged 21 or over.

Note the use of ∃S ∈ Students (p) for ∃S (S ∈ Students ∧ p).
We make free use of such (standard) abbreviations.

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.10 / 18

Further examples (1)

Query: Find the names of students who are taking Informatics 1

Relational algebra:

πStudents.name(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code (σname=‘Informatics 1’(Courses))))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

(C.name = ‘Informatics 1’ ∧ C.code = T.code ∧
S.mn = T.mn ∧ P.name = S.name)}

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.11 / 18

Tree representation of algebraic expression (abstract syntax)

For the previous query, changing the bracketing does not change the query.

πStudents.name((Students ./Students.mn=Takes.mn Takes)

./Takes.code=Courses.code (σname=‘Informatics 1’(Courses)) )

A tree representation can help one visualise a relational algebra query.

Students Takes

⋈Students.mn = Takes.mn

⋈Takes.code = Courses.code

πStudents.name

σname=’Informatics 1’

Courses

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.12 / 18

Further examples (2)

Query: Find the names of all courses taken by (everyone called) Joe

Relational algebra:

πCourses.name((σname=’Joe’(Students)) ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code Courses))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

(S.name = ‘Joe’ ∧ S.mn = T.mn ∧
C.code = T.code ∧ P.name = C.name)}

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.13 / 18

Further examples (3)

Query: Find the names of all students who are taking Informatics 1 or
Geology 1

Relational algebra:

πStudents.name(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Informatics 1’∨name=‘Geology 1’(Courses))))

Tuple-relational calculus:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses

((C.name = ‘Informatics 1’ ∨ C.name = ’Geology 1’) ∧
C.code = T.code ∧ S.mn = T.mn ∧ P.name = S.name)}

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.14 / 18

Further examples (4)

Query: Find the names of students who are taking both Informatics 1 and
Geology 1

Relational algebra:

πStudents.name(

(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Informatics 1’(Courses))))

∩
(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Geology 1’(Courses)))) )

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.15 / 18

Further examples (4 continued)

Query: Find the names of students who are taking both Informatics 1 and
Geology 1

Tuple-relational calculus:

{P | ∃S ∈ Students (P.name = S.name ∧
∀C ∈ Courses

((C.name = ‘Informatics 1’ ∨ C.name = ‘Geology 1’) ⇒
(∃T ∈ Takes (T.mn = S.mn ∧ T.code = C.code)))) }

Exercise. What does this query return in the case that there is no course in
Courses called ‘Geology 1’? Find a way of rewriting the query so that it
only returns an answer if both ‘Informatics 1’ and ‘Geology 1’ courses exist.

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.16 / 18

Further examples (5)

Query: Find the names of all students who are taking all courses

Tuple-relational calculus:

{P | ∃S ∈ Students (P.name = S.name ∧
∀C ∈ Courses

(∃T ∈ Takes (T.mn = S.mn ∧ T.code = C.code))) }

Exercise. Try to write this query in relational algebra.

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.17 / 18

Relational algebra and tuple-relational calculus compared

Relational algebra (RA) and tuple-relational calculus (TRC) have the same
expressive power

That is, if a query can be expressed in RA, then it can be expressed in TRC,
and vice-versa

Why is it useful to have both approaches?

Note 4 Tuple-relational calculus



Inf1B, Data & Analysis, 2008 4.18 / 18

Declarative versus procedural

Recall that TRC is declarative and RA is procedural.

This suggests the following methodology.

• Specify the data that needs to be retrieved using TRC.

• Translate this to an equivalent query in RA that gives an efficient
method of retrieving the data.

This methodology underpins practical approaches to query optimisation in
relational databases.

In practice, queries are written in a real-world query language such as SQL,
rather than TRC.

Nevertheless, query optimisation is of enormous importance in applications.

Note 4 Tuple-relational calculus


