Informatics 1B, 2008 School of Informatics, University of Edinburgh

Data and Analysis

Note 4
Tuple-relational Calculus

Alex Simpson

Part I — Structured Data

Data Representation:

Note 1 The entity-relationship (ER) data model

Note 2 The relational model

Data Manipulation:

Note 3 Relational algebra

Note 4 Tuple-relational calculus

Note 5 The SQL query language

Motivation

Tuple-relational calculus is another way of writing queries for relational data.

Its power lies in the fact that it is entirely *declarative*

That is, we specify the properties of the data we are interested in retrieving, but (in contrast to relational algebra) we do not describe a method by which the data can be retrieved

Basic format

Queries are based on tuple variables.

Each tuple variable has an associated schema. The variable ranges over all possible tuples of values matching the schema declaration.

A query has the form

$$\{T \mid p(T)\}$$

where T is a tuple variable and p(T) is a (first-order logic) formula (in which the tuple variable T occurs free).

The result of this query is the set of all possible tuples t (consistent with the schema of T) for which the formula p(T) evaluates to true with T=t

Simple example

Find all students at least 19 years old

$$\{S \mid S \in \mathtt{Students} \land S.\mathtt{age} > 18\}$$

In detail:

- Tuple variable S is introduced
- S instantiated over all tuples in the Students table
- Predicate S.age > 18 is evaluated on each individual tuple
- If and only if the predicate evaluates to true, the tuple is propagated to the output

Formal syntax of atomic formulae

An *atomic formula* is one of the following:

- $R \in Rel$
- R.a op S.b
- R.a op constant
- constant op S.b

where: R, S are tuple variables, Rel is a relation name, a, b are attributes of R, S respectively, and op is any operator in the set $\{>, <, =, \neq, \geq, \leq\}$

Formal syntax of (composite) formulae

A *formula* is (recursively defined) to be one of the following:

- any atomic formula
- $\neg p$, $p \land q$, $p \lor q$, $p \Rightarrow q$
- $\exists R. \ p(R), \quad \forall R. \ p(R)$

where p(R) denotes a formula in which the variable R appears free.

N.B. First-order logic was introduced in more detail in Inf1A Computation & Logic. Here, we use different notation for the connectives: \neg for *not*; \land for *and*; \lor for *or*; and \Rightarrow for \rightarrow . Our notation agrees with Ramakrishnan & Gehrke "Database Management Systems". The main difference from standard first-order logic is the use of variables ranging over tuples (rather than individuals), and the correspondingly specialised forms of atomic formula.

A subtle point

In ordinary first-order logic, one can, in theory, form quantifications $\exists R. p$ and $\forall R. p$ even when R does not occur in p. (In practice, such quantifications are normally useless since they are vacuous.)

In tuple-relational calculus we only allow $\exists R. \ p$ and $\forall R. \ p$ when R occurs free in p for the following reason.

• Under this rule, every tuple variable R that appears in a formula is forced to appear in at least one atomic subformula. The atomic formulae in which R appears then determine the schema of R. The schema is taken to be the smallest one containing all the fields that are declared as attributes of R within the formula itself.

Illustrative example

An example illustrating the previous point.

```
\{P \mid \exists S \in \mathtt{Students}\,(S.\mathtt{age} > 20 \ \land \ P.\mathtt{name} = S.\mathtt{name} \ \land \ P.\mathtt{age} = S.\mathtt{age})\}
```

- The schema of S is that of the **Students** table. This is declared by the atomic formula $S \in$ **Students**.
- The schema of P has just two fields name and age, with the same types as the corresponding fields in Students.
- The query returns a table with two fields **name** and **age** containing the names and ages of all students aged 21 or over.

Note the use of $\exists S \in \mathtt{Students}(p)$ for $\exists S (S \in \mathtt{Students} \land p)$. We make free use of such (standard) abbreviations.

Further examples (1)

Query: Find the names of students who are taking Informatics 1

Relational algebra:

```
\pi_{\mathtt{Students.name}}(\mathtt{Students} \bowtie_{\mathtt{Students.mn}=\mathtt{Takes.mn}} 
(\mathtt{Takes} \bowtie_{\mathtt{Takes.code}=\mathtt{Courses.code}} (\sigma_{\mathtt{name}='\mathtt{Informatics}\ 1'}(\mathtt{Courses}))))
```

Tuple-relational calculus:

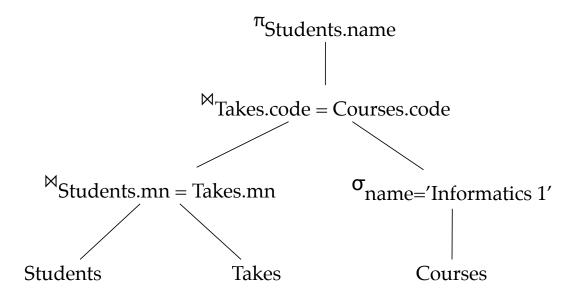
```
\{P \mid \exists S \in \mathtt{Students} \ \exists T \in \mathtt{Takes} \ \exists C \in \mathtt{Courses} \ (C.\mathtt{name} = \mathtt{`Informatics}\ 1` \land C.\mathtt{code} = T.\mathtt{code} \land S.\mathtt{mn} = T.\mathtt{mn} \land P.\mathtt{name} = S.\mathtt{name})\}
```

Tree representation of algebraic expression (abstract syntax)

For the previous query, changing the bracketing does not change the query.

```
\pi_{\mathtt{Students.name}}((\mathtt{Students} \bowtie_{\mathtt{Students.mn}=\mathtt{Takes.mn}} \mathtt{Takes}) \ \bowtie_{\mathtt{Takes.code}=\mathtt{Courses.code}} (\sigma_{\mathtt{name}='\mathtt{Informatics}\ 1'}(\mathtt{Courses})))
```

A tree representation can help one visualise a relational algebra query.



Further examples (2)

Query: Find the names of all courses taken by (everyone called) Joe

Relational algebra:

```
\pi_{\texttt{Courses.name}}((\sigma_{\texttt{name}='\texttt{Joe}'}(\texttt{Students}))\bowtie_{\texttt{Students.mn}=\texttt{Takes.mn}} 
(\texttt{Takes}\bowtie_{\texttt{Takes.code}=\texttt{Courses.code}}\texttt{Courses}))
```

Tuple-relational calculus:

```
\{P \mid \exists S \in \mathtt{Students} \ \exists T \in \mathtt{Takes} \ \exists C \in \mathtt{Courses} \ (S.\mathtt{name} = `\mathtt{Joe}` \ \land \ S.\mathtt{mn} = T.\mathtt{mn} \ \land \ C.\mathtt{code} = T.\mathtt{code} \ \land \ P.\mathtt{name} = C.\mathtt{name})\}
```

Further examples (3)

Query: Find the names of all students who are taking Informatics 1 or Geology 1

Relational algebra:

```
\pi_{\mathtt{Students.name}}(\mathtt{Students} \bowtie_{\mathtt{Students.mn}=\mathtt{Takes.mn}})
(\mathtt{Takes} \bowtie_{\mathtt{Takes.code}=\mathtt{Courses.code}})))
(\sigma_{\mathtt{name}=\mathtt{`Informatics 1'} \vee_{\mathtt{name}=\mathtt{`Geology 1'}}(\mathtt{Courses}))))
```

Tuple-relational calculus:

```
\{P \mid \exists S \in \mathtt{Students} \ \exists T \in \mathtt{Takes} \ \exists C \in \mathtt{Courses} \ ((C.\mathtt{name} = \mathtt{`Informatics}\ 1' \ \lor \ C.\mathtt{name} = \mathtt{`Geology}\ 1') \ \land \ C.\mathtt{code} = T.\mathtt{code} \ \land S.\mathtt{mn} = T.\mathtt{mn} \ \land \ P.\mathtt{name} = S.\mathtt{name})\}
```

Further examples (4)

Query: Find the names of students who are taking both Informatics 1 and Geology 1

Relational algebra:

```
Takes ⋈<sub>Students.mn=Takes.mn</sub>

(Takes ⋈<sub>Takes.code=Courses.code</sub>

(σ<sub>name='Informatics 1'</sub>(Courses))))

(Students ⋈<sub>Students.mn=Takes.mn</sub>

(Takes ⋈<sub>Takes.code=Courses.code</sub>

(σ<sub>name='Geology 1'</sub>(Courses)))))
```

Further examples (4 continued)

Query: Find the names of students who are taking both Informatics 1 and Geology 1

Tuple-relational calculus:

Exercise. What does this query return in the case that there is no course in **Courses** called 'Geology 1'? Find a way of rewriting the query so that it only returns an answer if both 'Informatics 1' and 'Geology 1' courses exist.

Further examples (5)

Query: Find the names of all students who are taking all courses

Tuple-relational calculus:

Exercise. Try to write this query in relational algebra.

Relational algebra and tuple-relational calculus compared

Relational algebra (RA) and tuple-relational calculus (TRC) have the *same* expressive power

That is, if a query can be expressed in RA, then it can be expressed in TRC, and vice-versa

Why is it useful to have both approaches?

Declarative versus procedural

Recall that TRC is *declarative* and RA is *procedural*.

This suggests the following methodology.

- *Specify* the data that needs to be retrieved using TRC.
- Translate this to an *equivalent query* in RA that gives an *efficient method* of retrieving the data.

This methodology underpins practical approaches to *query optimisation* in relational databases.

In practice, queries are written in a real-world query language such as SQL, rather than TRC.

Nevertheless, query optimisation is of enormous importance in applications.