Informatics 1B, 2008 School of Informatics, University of Edinburgh

Data and Analysis

Note 3
Relational Algebra

Alex Simpson

Part I — Structured Data

Data Representation:

Note 1 The entity-relationship (ER) data model

Note 2 The relational model

Data Manipulation:

Note 3 Relational algebra

Note 4 Tuple relational calculus

Note 5 The SQL query language

Querying

Once data is organised in a relational schema, the natural next step is to *manipulate* data. For our purposes, this means querying.

Querying is the process of identifying the parts of stored data that have properties of interest

We consider three approaches.

- Relational algebra (this note): a *procedural* way of expressing queries over relationally represented data
- Tuple-relational calculus (note 4): a *declarative* way of expressing queries, tightly coupled to first order predicate logic
- SQL (note 5): a widely implemented query language influenced by relational algebra and relational calculus

Operators

The key concept in relational algebra is an *operator*

Operators accept a single relation or a pair of relations as input

Operators produce a single relation as output

Operators can be *composed* by using one operator's output as input to another operator (composition of functions)

There are five basic operators: *selection*, *projection*, *union*, *cross-product*, and *difference*

Other operators can be defined as composites of these five, but are so frequently used that they are often treated as fundamental

Selection and projection: σ and π

Recall that relational data is stored in *tables*

Selection and *projection* allow one to isolate any "rectangular subset" of a single table

- Selection identifies *rows* of interest
- Projection identifies *columns* of interest

If both are used on a single table, we extract a *rectangular subset* of the table

Selection: example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435		20	helen@phys
s0189034	Peter	22	peter@math

Students

mn	name	age	email
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

$$\sigma_{age>18}$$
(Students)

π naı	me, age	(Stude	nts)

Combination

Selection: general form

General form: $\sigma_{\text{predicate}}$ (Relation instance)

A *predicate* is a condition that is applied on each row of the table

- It should evaluate to either true or false
- If it evaluates to true, the row is propagated to the output, if it evaluates to false the row is dropped
- The output table may thus have lower cardinality than the input

Predicates are written in the Boolean form

$$term_1$$
 bop $term_2$ bop ... bop $term_m$

- Where bop $\in \{ \lor, \land \}$
- term_i's are of the form attribute rop constant or attribute₁ rop attribute₂ (where rop $\in \{>, <, =, \neq, \geq, \leq\}$)

Projection: example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

Students

mn	name	age	email
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

$$\sigma_{age>18}$$
(Students)

	name	age		
	John	18		
	Mary	18		
	Helen	20		
	Peter	22		
π _{name, age} (Students)				

Combination

Projection: general form

General form: $\pi_{\text{column list}}$ (Relation instance)

All rows of the input are propagated in the output

Only columns appearing in the *column list* appear in the output

Thus the *arity* of the output table may be lower than that of the input table

The resulting relation has a different schema!

Selection and projection: example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435		20	helen@phys
s0189034	Peter	22	peter@math

Students

mn	name	age	email
s0378435	Helen	20	helen@phys
s0189034	Peter	ter 22 peter@matl	
(Students)			

$$\sigma_{age>18}$$
(Students)

name	age	
John	18	Ì
Mary	18	
Helen	20	
Peter	22	
me, age	(Stude	nts)

name	age
Helen	20
Peter	22

Combination

Note the *algebraic equivalence* between:

- $\sigma_{\text{age}>18}(\pi_{\text{name,age}}(\text{Students}))$
- $\pi_{\text{name,age}}(\sigma_{\text{age}>18}(\text{Students}))$

Set operations

There are three basic set operations in relational algebra:

- union
- difference
- cross-product

A fourth, *intersection*, can be expressed in terms of the others

All these set operations are binary.

Essentially, they are the well-known set operations from set theory, but extended to deal with tuples

Union

Let R and S be two relations. For union, set difference and intersection R and S are required to have compatible schemata:

• Two schemata are said to be *compatible* if they have the same number of fields and corresponding fields in a left-to-right order have the same domains. N.B., the names of the fields are not used

The $union\ R\cup S$ of R and S is a new relation with the same schema as R. It contains exactly the tuples that appear in at least one of the relations R and S

N.B. For naming purposes it is assumed that the output relation inherits the field names from the relation appearing first in the specification (\mathbf{R} in the previous case)

email

john@inf

mary@inf

Union example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

*S*₁

mn	name	age	email
s0489967	Basil	19	basil@inf
s0412375	Mary	18	mary@inf
s9989232	Ophelia	24	oph@bio
s0189034	Peter	22	peter@math
s0289125	Michael	21	mike@geo

			~				
0378435	Helen	20	helen@phys				
0189034	Peter	22	peter@math				
0489967	Basil	19	basil@inf				
	Ophelia	24	oph@bio				
0289125	Michael	21	mike@geo				
$S_1 \cup S_2$							

name

John

Mary

mn

s0456782

s0412375

age

18

18

 S_2

Set difference and intersection

The set difference R - S and intersection $R \cap S$ are also new relations with the same schema as R and S.

 $oldsymbol{R}-oldsymbol{S}$ contains exactly those tuples that appear in $oldsymbol{R}$ but which do not appear in $oldsymbol{S}$

 $R\cap S$ contains exactly those tuples that appear in both R and S

For both operations, the same naming conventions apply as for union

Note that intersection can be defined from set difference by

$$R \cap S = R - (R - S)$$

Set difference example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

*S*₁

mn	name	age	email
s0489967	Basil	19	basil@inf
s0412375	Mary	18	mary@inf
s9989232	Ophelia	24	oph@bio
s0189034	Peter	22	peter@math
s0289125	Michael	21	mike@geo

*S*₂

mn	name	age	email
s0456782	John	18	john@inf
s0378435	Helen	20	helen@phys

Intersection example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

*S*₁

mn	name	age	email
s0489967	Basil	19	basil@inf
s0412375	Mary	18	mary@inf
s9989232	Ophelia	24	oph@bio
s0189034	Peter	22	peter@math
s0289125	Michael	21	mike@geo

*S*₂

mn	name	age	email
s0412375	Mary	18	mary@inf
s0189034	Peter	22	peter@math

$$S_1 \cap S_2$$

Cross product

The *cross-product* (also known as the *Cartesian product*) $R \times S$ of two relations R and S is a new relation where

- The schema of the relation is obtained by first listing all the fields of R (in order) followed by all the fields of S (in order).
- The resulting relation contains one tuple $\langle r, s \rangle$ for each pair of tuples $r \in R$ and $s \in S$. (Here $\langle r, s \rangle$ denotes the tuple obtained by appending r and s together, with r first and s second.)

Note that if there is a field name common to R and S then two separate columns with this name appear in the cross-product schema.

N.B. The two relations need not have the same schema to begin with.

Cross-product example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

code	пате	year
inf1	Informatics 1	1
math1	Mathematics 1	1
	R	

 S_1

mn	name	age	email	code	пате	year
s0456782	John	18	john@inf	inf1	Informatics 1	1
s0456782	John	18	john@inf	math1	Mathematics 1	1
s0412375	Mary	18	mary@inf	inf1	Informatics 1	1
s0412375	Mary	18	mary@inf	math1	Mathematics 1	1
s0378435	Helen	20	helen@phys	inf1	Informatics 1	1
s0378435	Helen	20	helen@phys	math1	Mathematics 1	1
s0189034	Peter	22	peter@math	inf1	Informatics 1	1
s0189034	Peter	22	peter@math	math1	Mathematics 1	1

$$S_1 \times R$$

Renaming

The renaming operator changes the names of tables and columns.

This can be used to avoid *naming conflicts* when the application of an operator results in a schema with duplicate column names

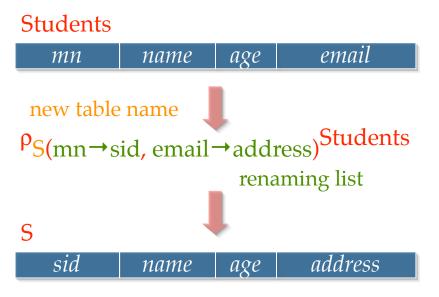
General form

 $\rho_{\text{New-relation-name(renaming-list)}}(\text{Original-relation-name})$

Semantics:

- The relation is assigned the new relation name
- The renaming list consists of terms of the form oldname → newname which rename a field named oldname to newname
- \bullet For ρ to be well-defined there should be no naming conflicts in the output

Renaming example



N.B.

- The types of the columns do not change
- Either the renaming list, or the new table name may be empty

Join

The relational join $R \bowtie_p S$ is the most frequently used relational operator.

It is a *derived operator*, it can be defined in terms of cross-product and selection.

The format for a join is $R \bowtie_p S$ where R and S are relations and the *join* predicate p is a predicate (as defined on slide 3.7) that applies to the schema of $R \times S$.

For example, p may have the form $\operatorname{col_1rop} \operatorname{col_2}$ where $\operatorname{col_1}$, $\operatorname{col_2}$ are columns of R, S and $\operatorname{rop} \in \{>, <, =, \neq, \geq, \leq\}$

Formally, the relational join is *defined* by:

$$R\bowtie_p S = \sigma_p(R\times S)$$

Join example

mn	name	age	email
s0456782	John	18	john@inf
s0412375	Mary	18	mary@inf
s0378435	Helen	20	helen@phys
s0189034	Peter	22	peter@math

mn	code	mark	
s0412375	inf1	80	
s0378435	math1	70	

Students

Takes

mn	name	age	email	mn	code	mark
s0412375	Mary	18	mary@inf	s0412375	inf1	80
s0412375	Mary	18	mary@inf	s0378435	math1	70
s0378435	Helen	20	helen@phys	s0378435	math1	70
s0189034	Peter	22	peter@math	s0412375	inf1	80

 $Students \bowtie_{Students.mn} = Takes.mn$ Takes

Equijoin

An *equijoin* is a commonly occurring join operation in which the predicate is a conjunction of equalities of the form R.name₁ = S.name₂. (A *conjunction* is a list of conditions connected by \wedge .)

The schema of the equijoin consists of the fields of R, followed by just those fields of S that are not mentioned in the join equalities. The equijoin is computed by *projecting* the join onto the fields that remain (all those of R, and those from S that have not been removed). Put more simply: remove from the join those columns labelled with S-fields that appear in the equalities.

Note that the example on the previous slide,

Students $\bowtie_{\text{Students.mn}} = \text{Takes.mn}$ Takes, is naturally treated as an equijoin. The resulting relation is then as before, but with the second column labelled mn removed.

Natural join

The *natural join* is a special equijoin in which the equalities are between *all* fields that have the same name in R and S.

We simply write $R \bowtie S$ for such an equijoin.

Note that the equijoin version of the example on slide 3.22 is in fact the natural join Students ⋈ Takes. (The common field name is mn.)

This is a very natural way of joining two relations, hence the name. It frequently occurs when joining two tables in which one has a foreign key constraint referencing the other.