

Example Student: Peter

- Peter: Taught by ITS Does his test score come from the normal distribution? 1. Test him = 120 2. Find position in the distribution: 3. Find Z score = x - μ (mean)/ σ (standard deviation) = 120-100/15 = 1.33
- 4. Look this up in tables: 1.33 > probability of 0.0918 So 9.18% of the usual-score population score higher
- than Peter not very convincing What is he scored 145 instead? Z = 3, p = 0.0013 of the score higher... So, 0.13% (1 in 769) would score higher -> so rare that it seems likely this comes from a different
 - population -> Reject the null hypothesis
 - Apr-16-07 Lect 15 Inf1 Data and Analysis: Exp Design

7

Evalu	ation Instruments: The KN	IT
Keyword standardi impaired	I Manipulation Task (O'Mara, 2005) sed across 57 children, including lan children; 5 – 12 years.	: guage
Stimulus:	How can you tell there has been an elepha your fridge? Footprints in the butter.	ant in
	Keyword Alternates: Mouse. Giraffe. Cat. Rabbit.	
Stimulus:	What do you get when you cross a car and sandwich? A traffic-jam.	d a
	Keyword Alternates: Bicycle. Plane. Train. Truck.	
Apr-16-07	Lect 15 Inf1 Data and Analysis: Exp Design	13

Statis Per	tical Comparison: T- ormance on Pipa Te	test st
Pre-intervention: Mean = 12.1	Standard Deviation = 7.87	,
Mean = 16.2 S Difference:	tandard Deviation = 9.76	
Mean = -4.11	Standard Deviation = 3.30)
The results of a p t= -3.74 degree	paired t-test ses of freedom = 8	
The probability of 0.006	this result, assuming the nul	l hypothesis, is
So cannot assum	ie the null hypothesis	
Apr-16-07 Lect 15	Inf1 Data and Analysis: Exp Design	19

STAN	DUP: some initial conclu	isions		
Issues with – scannir – voice o – improve	interface design ng utput ed appropriateness of vocabulary			
 The telling of the joke is important - what is the impact of STANDUP: on interactive conversation on joke comprehension and vocabulary acquisition 				
Do we want	t better jokes? (yes)			
Use with speaking children with language impairment and other user groups				
Apr-16-07	Lect 15 Inf1 Data and Analysis: Exp Design	25		

Writing-up empirical studies 1

Abstract: Short summary of the problem, the results and the conclusion.

Introduction: What is the problem? What related work have other people done? [Should go from general statement of the problem to a

succinct and testable statement of the hypothesis].

- Method: Participants: state number, background and any other relevant details of participants
- *Materials:* exactly what test materials, teaching materials, etc. were used, giving examples
- **Procedure:** clear and detailed description of what happened at each stage in the experiment [Someone reading should be able to duplicate it. Should also clearly indicate what data was collected and hows]

Writing-up empirical studi	es 2
Results: Give actual data, or a summary of it. Provide an analysis of data, using statistical test appropriate. Use tables and graphs to display data clearly. [Interpretation of results does not go here, but it	ts where/if
discussion section]. Discussion: Interpretation of results; restating of hypothesis implications of results; discussion of methor problems such as weaknesses in design, unanti difficulties, confounding variables, etc. Wider implications of the work should also be co here, and perhaps further studies suggested.	and the dological icipated onsidered
Conclusion: Statement of overall conclusion of the study. Apr-16-07 Lett 15 Inf1 Data and Analysis: Exp Design	28

References

Cohen, P. (1995) Empirical Methods for Artificial Intelligence, MIT Press, 1995.

- Corbett, A.T. and Anderson, J.R., (1990) The Effect of Feedback Control on Learning to Program with the Lisp Tutor, Proceedings of the 12th Annual Conference of the Cognitive Science Society, LEA, New Jersey, 1990
- Dix, A., Finlay, J., Abowd, R. and Beale, R. (2004) Human-Computer Interaction. Prentice Hall Preece, J., Rogers, Y., Sharp, H., Benyon, D. Holland, S. and Carey, T. (1994). Human-Computer Interaction. Addison-Wesley

29

Apr-16-07 Lect 15 Inf1 Data and Analysis: Exp Design