
Informatics 1 :: Data and Analysis

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R
G

H

Lecture Notes

Data and Analysis
Lecture Notes

Frank Keller Helen Pain Stratis Viglas
keller@inf.ed.ac.uk helen@inf.ed.ac.uk sviglas@inf.ed.ac.uk

Revision 1.0
January 2005

CONTENTS

I Structured Data 1
I.1 Overview . 1
I.2 The Entity/Relational Model . 2

I.2.1 Entities . 2
I.2.2 Relationships . 3
I.2.3 Additional Features . 5

I.3 Relational Databases . 9
I.3.1 The Relational Model . 9
I.3.2 Data Definition in SQL 10
I.3.3 Mapping E/R Diagrams to Relational Schemata 14

I.4 Querying and Manipulation . 18
I.4.1 Data Manipulation Through Relational Algebra 18
I.4.2 Tuple Relational Calculus 23
I.4.3 Examples . 25

I.5 Semi-structured Data and XML 31

II Semi-structured Data 35
II.1 Basic Concepts . 35

II.1.1 Corpus Data . 36
II.1.2 Questions Corpora Can Answer 36
II.1.3 Obtaining Corpus Counts 39
II.1.4 Building Applications Using Corpora 40

II.2 Data Acquisition and Annotation 41
II.2.1 Balancing and Sampling 42
II.2.2 Pre-processing . 43
II.2.3 Markup Languages . 46
II.2.4 Corpus Annotation . 47

II.3 Querying Corpora . 51
II.3.1 Concordances . 52
II.3.2 Regular Expressions . 54
II.3.3 Collocations . 56
II.3.4 Statistical Tests . 58

iv CONTENTS [CHAPTER

II.4 Information Retrieval . 61
II.4.1 Information Retrieval Systems 61
II.4.2 Indexing . 62
II.4.3 Vector Space Models . 65
II.4.4 Evaluation . 68

CHAPTER I
STRUCTURED DATA

For some applications, data is inherently structured. In this chapter we shall
look at different ways of representing structured data. In particular, we
shall focus on data representation in the Entity/Relationship model and we
shall see how this maps to the most dominant paradigm of structured data
representation, namely the relational data model. We shall then look at
different ways of manipulating data in this format and how these ways map
to the paradigms introduced in other parts of the course.

I.1 Overview

When dealing with structured data, we essentially have all information regarding
their properties at our disposal. As such, we can choose the way the data is represented
so that we can facilitate its manipulation. The basic steps involved in structured data
representation and manipulation are as follows:

1. Requirements Analysis: The data needs to be gathered and their structure iden-
tified. We also need to worry about what the users of the application expect,
i.e., what will the mode of interaction with the application be. This is the step
where we will identify the structure of the data.

2. Conceptual Design: Once the data has been identified, the next step is to or-
ganise it in such a way so that the inherent semantic links between the data are
maintained. The objective is to identify a representation of not only how the
data interact, but also how the users interact with the data.

3. Logical Design: After the structure of the data and its semantic properties have
been identified, we need to implement the conceptual design in terms of the
actual application. This involves mapping the conceptual design to a logical
data representation; the outcome of this process is what we call a logical schema.

Through the course of this chapter1 we will focus on a particular conceptual data
representation, namely the Entity/Relationship model and a particular data model,
the relational model. These two models form the basis of relational databases, which
are the most widely used data storage and manipulation paradigm. We shall focus
on the conceptual and logical design for relational databases. We shall see how the

1The basic source for notes for this chapter is Ramakrishnan and Gehrke (2003).

1

2 Structured Data [CHAPTER I

Entity/Relationship model maps to the relational data model and what tools are avail-
able in relational databases to define and manipulate data, the latter in the form of
relational algebra. We shall also see how the data manipulation primitives discussed
map to data manipulation mechanisms that have been discussed in other parts of the
course – namely logic.

I.2 The Entity/Relational Model

The Entity/Relationship (ER) model Chen (1976) is a way of describing the ob-
jects involved in an organization and capturing the dependencies between them. It is
a powerful abstraction that maps to numerous different logical designs, but it blends
particularly well with the relational data model.

I.2.1 Entities

The first building block of the ER model is an entity, which is used to describe any
distinguishable object in the real world. For instance, an Informatics student is anEntity: a distinguish-

able object in the real
world.

entity that can be distinguished by other entities. The term entity itself can be used
to identify a set of entities with similar properties. Such a collection of entities is what
is referred to as an entity set. In the previous example, the student in question belongs
to the entity set of all Informatics students. Note that entity sets need not be disjoint;
for instance a student can be both an Informatics student and an Engineering student
if s/he is doing both degrees. We shall revisit this point in the sequence.

Each entity has some characteristic attributes. Entities belonging to the same en-
tity set all share the same attributes. For example, all students have a matriculation
number. The number of attributes we wish to assign to a given entity reflects upon
the level of detail of our design. For instance, for students we may be interested
in their matriculation number, their name and their degree. We may not be inter-
ested, however, in their address. The attributes we choose for an entity reflects upon
the level of detail of the design. Different designs will have different requirements
regarding the level of detail, even though they might represent the same entities.

For each attribute of an entity 2, there is a domain associated with it. The domain
is the set of possible values of the given attribute. For instance, the domain of a page
number is the set of all positive integers. What distinguishes one entity from another
in the same entity set is the values of their attributes. For instance, each student has
a different matriculation number. The minimal set of attributes whose values allow
us to uniquely identify an entity form the entity’s key. Note that there may be more
than one possibilities for a key for a given entity; these are all called candidate keys.
When we choose to designate one as the key, this candidate key becomes the entity
set’s primary key. Each entity set must have a primary key to ensure set participation.

2And, hence, for all attributes of all entities in the same entity set.

§ I.2] The Entity/Relational Model 3

Students

Matric.
number

name

email

Figure I.1: Representation of the Students entity set

Students

matric.
number

name

email

Courses

code

name

year

Takes

mark

Figure I.2: The Takes relationship between Students and Courses

For each entity set, there is always at least one key: the collection of values across all
attributes of the entity.

For example, consider the real world entity set of students. The representation of
the entity set is shown in Figure I.1. The entity set is represented as a rectangle and
each attribute is represented by an oval. The primary key attribute (in this case, the
matriculation number) is underlined.

I.2.2 Relationships

Relationships model associations between entities. For instance, Natassa may be Relationship: an asso-
ciation between entities.an Informatics student taking a particular course. When describing entities, we saw

that it is possible to group entities in an entity set. The same grouping principle
applies for relationships too; relationships with similar properties can be grouped
into a relationship set. The elements of a relationship set can be thought of as tuples
consisting of n elements. For instance, the elements of the relationship set between
the entity sets Students and Courses can be represented as

{(s, c)|s ∈ Students, c ∈ Courses}

i.e., each element of the relationship set is a combination of an element from the Stu-
dents entity set with an element from the Courses element set. The same relationship
is shown in Figure I.2, where the relationship is represented as a diamond. Diagrams
like the one shown in Figure I.2 are called ER diagrams.

Just as in the case of entities, relationships may have descriptive attributes that

4 Structured Data [CHAPTER I

Students

matric.
number

name

email

Courses

code

name

year

Takes

mark

Degrees

name

Majors_In Appears_In

Figure I.3: More relationships between Students, Courses and Degrees

are relevant only to the relationship and not to any of the participating entities. In
Figure I.2, for instance, there is an attribute called “mark” which is only relevant to
the relationship, i.e., it is independent of any of the participating entities.

Once values are given to the attributes of the participating entities of a relation-
ship, and to the attributes of the relationship itself, we say that we have a relationship
instance. For example, an instance of the Takes relationship is the following:

(

Students entity︷ ︸︸ ︷
123,Natassa, natassa@somewhere, inf1, Informatics 1, 1︸ ︷︷ ︸

Coursers entity

,

Takes relationship attribute︷︸︸︷
88)

where two entities are combined, along with a value for the relationship-specific
attribute, to form it.

A relationship does not have to be between only two entities. In fact, it is rather
common that relationships are defined between more than two entities. Consider for
example a third entity, Degrees. A student may be taking a course towards a par-
ticular degree; this means that the Takes relationship may be defined across all three
participating entity sets, something which is shown in Figure I.3. On the other hand,
the same entity can participate in more that one relationships. Consider for instance,
the Majors_In relationship between Students and Degrees. This relationship is inde-
pendent of towards which degree a student takes a particular course. It is therefore
modeled separately in the ER diagram.

Note how different facets of the data can be captured using the ER diagram:
• The entities can appear and be represented regardless of whether relationships
actually exist between them.

§ I.2] The Entity/Relational Model 5

• Different interactions between entities are captured by different relationships.

This allows for different aspects of the data to be modeled in a structured and clean
manner. For instance, in the ER diagram of Figure I.3 a course may appear in multiple
degrees; the particular degree for which a student is taking the course is decoupled
from that relationship — it is a different relationship altogether.

I.2.3 Additional Features

Up to this point, we have only been concerned with the declaration of the entities,
the relationships among them and their properties. There are, however, a number
of other issues we are interested in when modeling data using the ER model. In
particular, we have not delved into any semantic constraints between the entities and Semantic constraints

capture the meaning of
the interactions among
the data.

relationships of the model. Semantic constraints are a way of capturing the meaning
of the data we are representing.

I.2.3.1 Key Constraints

The only instance of a semantic constraint we have seen so far, is the key of an
entity set, i.e., a way of uniquely identifying an entity in a given entity set. Semantic
constraints in the form of keys, however, are possible when dealing with relationships.
Consider for instance the interaction between Students and another entity set, Di-
rectors Of Studies — or simply DoSs, modeled as the relationship Directed_By and
shown in Figure I.4. Each student has a single DoS; in other words, given a student Key constraint: by in-

stantiating one of the
participating entities in
a relationship, we can
determine the others.

we can identify his or her DoS. On the other hand, a student has at most one DoS.
This is an example of a key constraint. A more formal definition is the following: in
a relationship R between n entity sets E1 . . . En where a key constraint is on one of
the entities Ek, then by instantiating Ek, i.e., giving a value to the attributes of Ek,
we can determine the instance of the relationship it participates in. In the example of
Figure I.4, there is a key constraint on Students; instantiating a student, determines
his or her DoS. In an ER diagram, this is denoted by an arrow from the entity set
on which the key constraint is placed, to the relationship. In our example, the ar-
row means that given a Student entity, we can determine the relationship instance it
participates in.

Another way of thinking stems of looking at the number of times an entity ap-
pears in relationship instances. In the example between DoSs and Students, we say One-to-many and

many-to-many rela-
tionships capture how
many entity instances
per relationships may
appear.

that the relationship Directed_By is a one-to-many relationship since it indicates that
one DoS is associated with many Students. The Takes relationship of Figures I.2
and I.3, on the other hand, is an instance of what is called a many-to-many relation-
ship since there in no constraint on how many courses a student can take. Note that
if there is a key constraint then by definition the relationship is of the one-to-many
kind.

6 Structured Data [CHAPTER I

Students

Matric.
number

name

email

DoS

Staff ID

name

email

Directed_By

Figure I.4: A key constraint on the Students entity

0459295

0482364

0423872

0403462

1190345

5690246

1295298

Students DoSsDirected_By

Total participation Partial participation

Figure I.5: Total and partial participation of entities

I.2.3.2 Participation Constraints

Finally, we can think in terms of participation of entities in relationships.
Consider the Directed_By relationship and the key constraint on it; it specifies thatParticipation con-

straints capture the
mode in which an
entity set participates in
a relationship.

every student has a director of studies. How about the inverse? Does every DoS
entity have a Student entity it is related to? The answer is no — there are DoSs that
are not directors for any students. A participation constraint captures the mode in
which an entity set participates in a relationship. We have two kinds of participation
constraints: (i) a total participation on entity set E for relationship R is declared when
every entity e ∈ E appears in a relationship instance of R; (ii) alternatively, a partial
participation on entity set E for relationship R is declared when it is allowable for
entities e ∈ E not to appear in instances of R.

Given the above formulation, the participation of the Students entity set in the
Directed_By relationship is total; the DoSs entity set, however, partially participates
in the relationship. In terms of pictorial representation of participation, total partici-
pation is denoted as a thick line between the relationship and the participating entity.
If there are key constraints on the totally participating entity, the arrow representation

§ I.2] The Entity/Relational Model 7

Students DoSDirected_By

Figure I.6: Representation of total participation; the attributes have been omitted for
simplicity.

number capacity

Buildings

name address

Rooms Is_Located_In

Figure I.7: An example of a weak entity set

is retained. (See also Figure I.6 for an example.)

I.2.3.3 Weak Entities

We have seen that a subset of the attributes of an entity set can be designated
as a primary key. In certain cases, however, the key is formed not only from the
attributes of a single entity set. It is formed by a combination of its own attributes
and attributes from another entity set with which it has a relationship. In these cases,
the entity set in question is called a weak entity set; the entity set from which attributes
are borrowed in order to form the primary key is called the identifying owner. The
relationship that connects the weak entity set and its identifying owner is called an
identifying relationship. Weak entities cannot

exist unless they have
an identifying rela-
tionship with an iden-
tifying owner.

Consider, for example, a scenario like the one shown in Figure I.7 where Build-
ings and Rooms are represented. A relationship between the two designates which
building each room is located in. Each room has a number and a capacity; each
building has a name and an address. Though the name of the building can be used
as its primary key, the number of a room cannot be used as a primary key for Rooms;
the reason is that across different buildings, the same room number may appear. For
that reason, in order to form a primary key for the Rooms entity set, we need to
“borrow” the key of the Buildings entity set in order to form a composite key. The
part of the primary key that belongs to the weak entity is underlined with a double
line. The weak entity set is drawn with a double box and the identifying relationship
with a double diamond. Note also that a weak entity must have a total participation
constraint with its identifying relationship.

8 Structured Data [CHAPTER I

I.2.3.4 Hierarchical Entities and Inheritance

The final feature we will discuss has to do with the refinement of entity sets.
For example, consider Students. They can either be Full-time Student, or Part-time
Students. In both cases we say that they refine the Students entity sets and they
become subclasses; the Students entity set is called the superclass. Subclasses provide
additional information about their superclass, in the form of attributes, while at the
same time they inherit all the superclass’s attributes. For instance, the complete set of
attributes for Part-time Students is

(

Inherited from Students︷ ︸︸ ︷
matric. number, name, email, part-time load︸ ︷︷ ︸

Extra attribute

)

i.e., all the Students attributes are still evident, but they are extended with informa-
tion specific only to Part-time Students.A superclass is spe-

cialised through inher-
itance into subclasses;
subclasses are gener-
alised by the superclass.

Note that this is a much cleaner way of thinking about the entity sets we are
trying to model. The alternative would be to embed the extra full-time and part-time
student attributes in the students entity and add an extra attribute for the Students
entity set designating the type of student, i.e., a “’flag” denoting a student as full-time
or part-time. However, this meant that although full-time and part-time students
have different properties, we would treat them uniformly. By creating an inheritance,
we have the following two advantages:

• The subclasses still retain the properties of their superclass, but they extend
them. In this case, we say that the superclass is specialised in the subclasses. On
the other hand, the subclasses are generalised by the superclass.

• Changing the values of the attributes of the superclass immediately has an effect
on the attribute values of the subclasses. Changing the value for an attribute
specific to a subclass does not reflect on the superclass’s attribute values. For
instance, the chance of a student’s name is a general one and takes place regard-
less of whether a student is a full-time or part-time student, i.e., it takes place
at the superclass level. Changing the load of a part-time student, however, is
only specific to part-time students, i.e., it takes place at the subclass level.

The meaning of these changes is elegantly captured by ER modeling through the
forming hierarchies and the concept of inheritance.

The Students hierarchy is shown in Figure I.8; a hierarchy relationship between
entity sets is designated as a triangle modeling what is known as an “Is-a” relationship
(i.e., a part-time student is a student).

§ I.3] Relational Databases 9

Students

matric.
number

name

email

ISA
Full-time
Students

Part-time
Students

semester
load

part-time
load

Figure I.8: An example of a hierarchy

I.3 Relational Databases

The relational model was first introduced by E. F. Codd in 1970 Codd (1970)
when most existing database system implementation were using a hierarchical or a
network data model. The simplicity of the relational model immediately caught on
and led to the first relational database systems being developed by industry Astrahan
et al. (1979) (at IBM’s Almaden Research Center) and by academia Stonebraker et al.
(1976) (at the University of California at Berkeley). The first prototypes were built by
the mid 1970’s and the relational database industry has since become a multi-billion
dollar industry. Nowadays, whenever one is doing anything involving structured data
— ranging from bank account transactions to browsing the web — chances are that,
at some point, a relational database server is going to be used. In this chapter we
will introduce the relational data model, we will see how one can convert conceptual
designs in the ER model to relational schemata and we will also see how one can
manipulate relational data.

I.3.1 The Relational Model

The basic construct of representing data in the relational model is a relation.
A relation consists of what is known as a schema and an instance. An instance of
a relation is what is also known as a database table. The schema of the table is a
description of the column headings and the type of each column of the table. A relation consists of

its schema; a schema
is a collection of fields
with domain informa-
tion for each field. An
instance of a relation is
a table, consisting of a
set of tuples that assign
values to the fields of the
schema.

A schema is a set of fields. A field is a (attribute-name, attribute-domain) pair.
In various texts, fields will be referred to as columns or attributes, while domains may
be referred to as types. A domain is nothing more than the set of possible values that
can be assigned to an attribute. For instance, if we are modeling a relation about
Students, the relational schema might be:
Student(mn : string , name : string , age : integer , email : string)

10 Structured Data [CHAPTER I

which means that the necessary information to describe a student is:

• his/her matriculation number is denoted by a field called mn, which is a
string , i.e., the domain of the matriculation number is alphanumeric char-
acter sets;

• the student’s name is denoted by a field called name, which is a string ;

• his/her age, which is an integer number;

• and, finally, the student’s email address (denoted by a field called email) which
again is a string .

An instance of the relation adhering to the specified schema is a table. Tables
consist of tuples, i.e., sets of values for the fields of the schema. Tuples are also referred
to as rows, or records. These concepts are summarised in Figure I.9. There, we see
a table with a schema specified as above and four tuples in it. Each tuple contains
values for the four fields of the table’s schema.

To formalise all of the above, let R be a relation, fi, i = 1, . . . , n be the relation’s
fields and Di the domain of field fi. A relation instance is then a set of tuples, each
containing n values, vi, i = 1, . . . , n for the n fields of the schema such that:

{〈f1 : v1, . . . , fn : vn〉 | v1 ∈ D1, . . . vn ∈ Dn}

Given this notation, the first tuple of Figure I.9 can be written as: 〈mn :

s0456782 , name : John , age : 18, email : john@inf 〉. Note that we treat a re-
lation instance as a set; this means that the every tuple in the instance appears exactly
once.Arity is the number of

fields in a schema; car-
dinality is the number
of tuples in an instance.

Each relation is also characterised by its arity; each relation instance is charac-
terised by its cardinality. The arity of a relation is the number of fields in its schema;
the cardinality of a relation instance is its number of tuples. For instance, the arity
of the Students relation is four; the cardinality of the relation instance if Figure I.9 is
four as well.

I.3.2 Data Definition in SQL

Before we move on to mapping ER diagrams to relational schemata, we will
present the basic tool that allows us to define a relational schema in the first place.
This is in the form of a subset of the Structured Query Language (SQL) used by rela-
tional database system, called the Data Definition Language (DDL) Boyce and Cham-
berlin (1973). In the next few sections, we will see how one can declare and modify
a relation in SQL. SQL in its entirety allows us not only to define, but also query
relational data; in this section we will confine ourselves to only data definition. For

§ I.3] Relational Databases 11

mn name age email

s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

Schema

Fields (a.k.a attributes, columns)

{Tuples
(a.k.a records,

rows)

Figure I.9: An instance of the Students relation

simplicity, we assume that there are only three built-in types in SQL, with obvious
semantics: integer for integer numbers, real for real numbers and char(n

) for an alphanumeric sequence of maximum n characters.
The SQL language uses the keyword table to denote relations. In order to

create a table3, one has to use the create table construct, which is of the form:
create table table name (attribute name attribute type

[, attribute name attribute type] *)

i.e., a create table command, followed by at least one definition of an attribute;
more than one attributes are separated by commas. To properly define an attribute,
we need to declare the attribute name and the attribute type. For instance, the Stu-
dents relation can be defined as follows:

create table Students (mn char(8),

name char(20),

age integer,

email char(15))

The ER model, as we have described, allows one to specify semantic constraints
over the entities and relationships described. All these constrains in the relational
model are called integrity constraints. For a table to be acceptable, all integrity Integrity constraints

model the semantic con-
straints in the relational
model.

constraints relevant to the table need to be satisfied at all times. An implementation of
the relational model — in all probability by using a relational database management
system — will have to enforce these integrity constraints. In other words, only legal
instances will be permitted to be stored in the database. The types of constraints we
will talk about in the remainder of this section are primary key constraints and foreign
key constraints

I.3.2.1 Primary Key Constraints

We have seen when presenting the ER model, that it is possible to designate a
subset of attributes of an entity set as the minimal set of attributes that allows one to

3In the sequence, we shall use the terms “table” and “relation” interchangeably.

12 Structured Data [CHAPTER I

decide on entity set participation. This translates almost verbatim to the relational
model. A primary key for a relation means that each tuple in the relation will have
different values for the attributes of the primary key. We also saw that it is possible
for different subsets of an entity set’s attributes to act as keys; each such subset is
a candidate key. The relational model, through its implementation in SQL, allows
primary keys to be declared.

Consider for example the Students relation. We know student matriculation
numbers are unique. We also know that email addresses are unique. So, if one gives
us a matriculation number, or an email address, we can tell whether there is a tuple
in the Students relation containing those values. The matriculation number and the
email address are candidate keys for the Students relation. However, in the relational
model and, in extension, SQL there can be only one primary key. So at this point, we
need to decide on which of the candidate keys we will use as the primary key for the
relation. Let us assume that we choose the matriculation number as the primary key.
We can make this choice explicit when defining the Students table, by employing the
SQL primary key command:

create table Students (mn char(8),

name char(20),

age integer,

email char(15),

primary key (mn))
Note at this point that we have declared the primary key and the SQL implemen-

tation itself will enforce this constraint at all times. For instance, if a user tries to
modify the Students table by inserting a tuple that contains a matriculation number
that already exists in the database, the insertion will not be permitted.

I.3.2.2 Foreign Key Constraints

When discussing relationships and weak entities in the ER model, we saw that
it is possible for “linking” between entity sets. This mechanism is available in the
relational model as well, through the existence of foreign key constraints. Consider
for example another relation that models which students take which classes, with the
following schema:

Takes(mn : string , code : string , mark : integer)

i.e., a table of three attributes, the first attribute being the matriculation number
of the student, the second attribute being a symbolic code for the course and the
third attribute being the mark that the student has achieved in the course (see also
Figure I.2). We also know that the matriculation number of a student is unique (i.e.,
it is a primary key for the Students table) and let us assume that the code of a course
is unique as well (i.e., if there is a Courses table, the code attribute has been declared
as its primary key.)

§ I.3] Relational Databases 13

Consider now the scenario in which we want to ensure that only existing students
can enroll in courses. Or, the inverse of that, that students can enroll in courses that
will certainly be offered. This information is already encoded in the Takes table,
provided we can make it accessible. The only thing we need to declare is that there
is a reference from the Takes relation to the Students relation and that reference is
materialised by the mn field. We can declare what in relational model terms is called
a foreign key constraint, which models a semantic linking between the two tables. We
can declare as many foreign key constraints for a single relation as there are applicable.
Foreign key declaration is achieved through the foreign key construct of SQL.
In SQL, the definition for the Takes table becomes:

create table Takes (mn char(8),

code char(20),

mark integer,

primary key (mn, code),

foreign key (mn)

references Students ,

foreign key (code)

references Courses)
The primary key for the relation is set to the combination of (mn, code), i.e.,

every pair of values for these two columns in every Takes relation instance needs
to be unique. The foreign key in the referencing relation (in this example, Takes)
must match the primary key of the referenced relation(s) (in our example, Students
and Courses). “Matching” in this context means that the two keys have the same
number of columns and compatible data types; the actual column names may be
different (e.g., we could have named the mn column of the Takes table as matric).
The definition of the Takes table essentially imposes two constraints:

1. whenever a tuple is inserted, the value for the mn field needs to be a value that
appears in the matriculation number column of the Students table;

2. the value for the code field needs to be a value that appears in the corresponding
column of the Courses table.

Consider for example the scenario depicted in Figure I.10 where we see instances
of Students, Courses and Takes. Note that each tuple appearing in the Takes relation
instance contains values in itsmn and code fields that appear in the respective columns
of the Students and Courses tables. The insertion of a tuple in the Takes table for a
non-existing student, for instance 〈s0237367, adbs, 90〉, is not allowed regardless of
whether the code for the course exists; the same applies to the insertion of a tuple
for a non-existing course, e.g., 〈s0456782, phys1, 42〉, is not permitted as well, again
regardless of the fact that a corresponding student exists. Both foreign key constraints
need to be satisfied for an insertion to be successful.

14 Structured Data [CHAPTER I

mn name age email

s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@mathmn code mark

s0456782 inf1 80

s0412375 geo1 78

s0412375 inf1 56

s0189034 math1 62

code name year

inf1 Informatics 1 1

math1 Mathematics 1 1

geo1 Geology 1 1

dbs Database Systems 3

adbs Advanced Databases 4

Referenced relations

Referencing relation

Primary key

Primary key

Primary key

Foreign keys}

Figure I.10: Foreign key constraints

I.3.3 Mapping E/R Diagrams to Relational Schemata

In Section I we saw how, after the requirements specification of an application are
captured, they can be translated to a conceptual schema. The outcome of this process
is an ER modeling of the data that captures the various entities, relationships among
them and various semantics of those relationships. We will now talk about how it is
possible to move from the conceptual design of an ER model to a logical design of a
relation schema.

I.3.3.1 Mapping Entity Sets

An entity set is the most straightforward concept to map to a relation. An entity
set becomes a table and each attribute of the entity set becomes an attribute of the
table. Key constraints of the entity set are mapped to primary key constraints of the
table.

Consider for example the Courses entity of Figure I.2; this is mapped straightfor-
wardly to the following table definition:

create table Courses (code char(6),

name char(20),

year integer,

primary key (code))

§ I.3] Relational Databases 15

I.3.3.2 Mapping Relationship Sets without Constraints

Each relationship set in the ER model is mapped to a relation in the relational
model, by following these principles:

• the relation contains the primary keys of the participating entity sets;

• any descriptive attributes of the relationship are added to the relation;

• a composite primary key, consisting of the primary keys of the participating
entity sets is declared on the relation;

• foreign key constraints are declared on the primary keys, referencing the pri-
mary keys of the participating entity sets.

Given these principles, then the relation for the Takes relationship shown in Fig-
ure I.3, between Students, Takes and Degrees can be defined as follows:

create table Takes (mn char(8),

code char(20),

name char(20),

mark integer,

primary key (mn, code, name),

foreign key (mn)

references Students ,

foreign key (code)

references Courses ,

foreign key (name)

references Degrees)

I.3.3.3 Mapping Relationship Sets with Key Constraints

Whenever there is a key constraint, the situation is slightly altered. The key
issue is that whenever we have a key constraint we cannot use a combination of
the keys of the participating entity sets as the primary key of the relationship ta-
ble. Consider the case of Students and DoSs first introduced in Figure I.4. Note
that because each student has at most one DoS, no two tuples of the relationship
table can have the same value for the matriculation number attribute but differ-
ent values for the DoS’s staff id. As a consequence, it suffices for the matricula-
tion number of a student to be declared as the primary key of the relationship ta-
ble. The Directed_By relationship can therefore be mapped to the following table:

16 Structured Data [CHAPTER I

create table Directed_By (mn char(8),

staff_id char(8),

primary key (mn),

foreign key (mn)

references Students ,

foreign key (staff_id)

references DoSs)
The method to map a relationship to a relation for relationships with key con-

straints is therefore similar to the one used for mapping simple relationships to re-
lations; the difference is that instead of declaring a composite primary key we only
declare as primary key the same primary key of the entity sets that acts as the “source”
of the directed edge in the ER diagram (in the previous case, Students). This is the
minimal amount of information that allows us to decide participation in the relation-
ship.

I.3.3.4 Mapping Relationship Sets with Participation Constraints

The relational model allows for what are called null values, i.e., values that are
left undefined. For instance, one can insert a tuple in the Students table of the form
〈s0389483, Joe, null 〉 for a student named Joe but who does not have a designated
email address. The value of the email address field is null . By allowing or disallow-
ing null values in a relationship table we can implicitly declare total participation
constraints. Total participation is achieved through designating a field as not null

. For instance, total participation in the Directed_By relationship table for Students
can be declared by annotating the definition of the mn attribute with the not null

keyword as follows:
[...]

mn char(8) not null,

[...]

In this specific example, the not null specification is redundant since by
definition key fields in SQL are never allowed to have a null value. However,
the general mechanism of ensuring total participation in a relationship table is by
explicitly disallowing the fields relevant to the totally participating entity set to take
null values.

I.3.3.5 Mapping Weak Entity and Weak Relationship Sets

Recall from the discussion that weak entity sets cannot exist without an identify-
ing relationship and an identifying owner in the relationship. This means that there
should be no instances of a weak entity without a corresponding identifying owner.
The steps to mapping a weak entity set to a relation are as follows:

• create a table for the weak entity set, incorporating all its attributes;

§ I.3] Relational Databases 17

• add another attribute set, which is the primary key of the entity set’s identifying
owner;

• add a foreign key constraint on the identifying owner’s primary key;

• instruct the system to automatically delete any tuples in the table for which
there are no owners.

We have already seen how the first three steps can be accomplished in SQL. The
final step is accomplished by another SQL construct called cascading deletions, im-
plemented by the command on delete cascade . Consider for example the
schema for the weak entity and weak relationship sets of Figure I.7. This will be
translated in the following SQL command for defining the Rooms table:
create table Rooms (number char(8),

capacity integer,

name char(20),

primary key (number, name),

foreign key (name)

references Buildings ,

on delete cascade)

Note that the weak entity set and the weak relationship set have been collapsed
into a single table. The primary key for this table has been set to (number, name)
pairs. A foreign key constraint has bee declared on the name of a building, with
the additional constraint that whenever a building is delete for any reason, all entries
referring to this building in the table should be deleted as well; the latter is achieved
through the on delete cascade command.

I.3.3.6 Mapping Hierarchical Entities

Hierarchical relationships are special types of relationship. The approach we fol-
low in mapping them to relations is the following:

• declare a relation for the superclass of the hierarchy, specifying its primary key;

• for each subclass specialisation, declare another relation, combining into it the
primary key of the superclass and all the extra attributes of the subclass;

• for each subclass, declare as its primary key the same primary key as in its
superclass;

• declare a foreign key constraint on the primary key of the subclass, to the
primary key of the superclass.

18 Structured Data [CHAPTER I

Given this approach, the definition for Part-time Students from Figure I.8 is as
follows:
create table PT_Students (mn char(8),

pt_load integer,

primary key (mn),

foreign key (mn)

references Students)
The definition for Full-time Students is similar. Note that by using this approach,

if we want to retrieve information that is relevant to all students, we can do so by look-
ing into the Students table. For information that is relevant to Part-time Students, we
only need to look into the PT_Students table. We can retrieve all extra information
for Part-time Students not present in the PT_Students table (for instance, their name
or their email address) by taking advantage of the link between the PT_Students and
Students tables implemented by both tables’ mn attribute.

I.4 Querying and Manipulation

Once the data has been ogranised in a relational database, the natural next step
is identifying ways of manipulating data conforming to the defined schema. In this
section we shall present two such ways:

• relational algebra, is the dominant formal language for expressing queries over
relationally represented data;

• tuple-relational calculus is another language, which is tightly coupled to first
order predicate logic.

Relational algebra and tuple-relational calculus have the same expressive power,
i.e., any query that can be expressed in one can be expressed in the other. We will
examine each mechanism in turn.

I.4.1 Data Manipulation Through Relational Algebra

Relational algebra is a procedural abstraction of expressing queries over relational
data. The key concept in relational algebra is an operator. Each operator has the fun-
damental property of accepting either a single relation instance or a pair of relations
instances as input and producing a single relation instance as output. This means
that relational algebra operator can be composed in order to form relational algebra
expressions— in other words complicated queries. We shall first present the five basic
operators of relational algebra (namely, selection, projection, union, cross-product, and
difference) and we shall then present some additional operators that although they
can be expressed in terms of basic operators, they are so frequently encountered that
special attention is given to them.

§ I.4] Querying and Manipulation 19

mn name age email

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

name age

John 18

Mary 18

Helen 20

Peter 22

name age

Helen 20

Peter 22

(a) σage>18(Students) (b) πname,age(Students) (c) Combination

Figure I.11: Examples of selection and projection operator

I.4.1.1 Selection and Projection

Recall that relational data is organised in a tabular format; the selection and pro-
jection operators allow us to isolate any rectangular subset of a table. Selection oper-
ators are expressed as:

σpredicate(Relation Instance)

i.e., the predicate in the subscript should be evaluated on the relation instance pa-
rameter. The predicate is a condition on one or more of the attribute values of A selection filters rows

of the input table.the relation, that is evaluated on every tuple. Naturally, each predicate should eval-
uate to either true or false. The result of a selection is another table, with the same
schema as its input but with fewer tuples (or, at most the same number of tuples if
the selection predicate evaluates to true for each tuple). The predicate can be any
Boolean combination i.e., any combination term1 bop term2 bop . . . bop termi

where bop ∈ {∧,∨}. The termi terms are of the form attribute rop constant or
attribute1 rop attribute2 where rop ∈ {>, <,=, 6=,≥,≤}. Reference to an at-
tribute is usually done by its name (i.e., name) or by qualifying the attribute name
with the name of the table it belongs to (i.e., table-name.attribute-name).

Consider, for example, the Students table of Figure I.9. The selection operator
expressed as:

σage>18(Students)

returns the relation instance shown in Figure I.11(a). Note how the tuples of the
input that do not satisfy the selection predicate are eliminated from the output.

The projection operator extracts entire columns of its input relation instance. It A projection filters
columns of the input
table.

is expressed as:
πcolumn list(Relation instance)

with the semantics that columns in the column list should be retained in the output;
the rest of the columns are “projected out,” i.e., dropped from the schema. Consider,

20 Structured Data [CHAPTER I

for example the evaluation of the projection operator:

πname,age(Students)

over the table of Figure I.9. The output of this operation is shown in Figure I.11(b).
Note that only the attributes in the subscript list are retained in the output; the other
attributes are not.

Given their properties, we can combine selection and projection operators in
order to build more complicated expressions that allow us to select any rectangular
region of the original table. For instance, the following expression:

πname,age(σage>18(Students))

combines the two previous operations into a single one, giving the result shown in
Figure I.11(c). This is a repercussion of selections and projections accepting relations
as input and producing relations as output.

I.4.1.2 Set Operations

There are four set operations in relational algebra: union (∪), intersection (∩),
difference (−) and cross-product (×). All four operations are binary, i.e., the acceptSet operations have

the expected semantics
from algebra, but ex-
tended to the relational
data model.

two relations as input. The first three assume that both input relation have the same
number of fields and, in addition, corresponding fields taken in a left-to-right order
have the same domains. Note that the actual field names are not used when testing
compatibility.
Union: the union R ∪ S of two relations R and S results in a new relation with
the same schema as the two input relations; the output relation consists of tuples
appearing in either of the input relations. For naming purposes, it is assumed that the
fields of the output relation inherit the names of the relation appearing first in the
intersection specification (i.e., R in the previous case).

Intersection: the intersection R∩S of two relations R and S results in a new relation
with the same schema as the two input relations; the output relation consists of tuples
appearing in both input relations. The field naming convention is the same as in the
union case.

Set difference: the set difference R − S of two relations R and S results in a new
relation with the same schema as the two input relations; the output relation consists
of tuples appearing in R but not in S. The field naming convention is the same as in
the union case.

§ I.4] Querying and Manipulation 21

mn name age email

s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

mn name age email

s0489967 Basil 19 basil@inf

s0412375 Mary 18 mary@inf

s9989232 Ophelia 24 oph@bio

s0189034 Peter 22 peter@math

s0289125 Michael 21 mike@geoS1

S2

code name year

inf1 Informatics 1 1

math1 Mathematics 1 1

geo1 Geology 1 1

dbs Database Systems 3

adbs Advanced Databases 4

R

Figure I.12: Three example relation instances

Cross-product (also known as Cartesian product): the cross-product R × S of
two relations R and S is a new relation. The schema of the new relation is the union
of the two schemata. The resulting relation contains one tuple 〈r, s〉 for each pair of
tuples r ∈ R and s ∈ S.

Consider the three relation instances shown in Figure I.12. Two instances (S1 and
S2 are over the Students; the third relation instance (R) is over the Courses schema.
The results of S1∪S2, S1∩S2, S1−S2, and S×R are shown in Figure I.13. Note that
we can only apply union, intersection and set difference over S1 and S2; since S1 or
S2 and R do not share compatible schemata, these operations are inapplicable. Cross-
product, however, is perfectly permissible over relations with different schemata.

I.4.1.3 Renaming

When discussing set operations, we had to resort to naming conventions in case
of naming conflicts. For instance, when dealing with the cross-product of S1 and Renaming helps to give

aliases to column and
table names.

R in Figure I.13 we saw that there are two instances of a field named name. In that
case, we “annotated” the conflicting field names with the name table they originated
from. In order to avoid such conflicts we introduce a renaming operator of the form:

ρNew relation name(renaming list)(Original relation name)

with the following semantics:
• the original relation is assigned the new relation name;

22 Structured Data [CHAPTER I

mn name age email

s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

s0489967 Basil 19 basil@inf

s9989232 Ophelia 24 oph@bio

s0289125 Michael 21 mike@geo

S1 ∪ S2

mn name age email

s0456782 John 18 john@inf

s0378435 Helen 20 helen@phys

S1 - S2

mn name age email

s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math

S1 ∩ S2

mn name age email code name year

s0456782 John 18 john@inf

s0456782 John 18 john@inf

s0456782 John 18 john@inf

s0456782 John 18 john@inf

inf1 Informatics 1 1

math1 Mathematics 1 1

geo1 Geology 1 1

dbs Database Systems 3

adbs Advanced Databases 4s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf inf1 Informatics 1 1

math1 Mathematics 1 1

geo1 Geology 1 1

dbs Database Systems 3

adbs Advanced Databases 4

s0412375 Mary 18 mary@inf

s0412375 Mary 18 mary@inf

s0412375 Mary 18 mary@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys inf1 Informatics 1 1

math1 Mathematics 1 1

geo1 Geology 1 1

dbs Database Systems 3

adbs Advanced Databases 4

s0378435 Helen 20 helen@phys

s0378435 Helen 20 helen@phys

s0378435 Helen 20 helen@phys

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math inf1 Informatics 1 1

math1 Mathematics 1 1

geo1 Geology 1 1

dbs Database Systems 3

adbs Advanced Databases 4

s0189034 Peter 22 peter@math

s0189034 Peter 22 peter@math

s0189034 Peter 22 peter@math

s0189034 Peter 22 peter@math

S1 × R

Figure I.13: Examples of set operations over the relation instances of Figure I.12

• the renaming list consists of terms of the form oldname → newname which
rename a filed named oldname to newname;

• for ρ to be well-defined there should not be any conflicts in the output.

In certain cases, either the new relation name, or the renaming list may be omitted.

§ I.4] Querying and Manipulation 23

Obviously, not both can be omitted at the same time — this is meaningless.
As an example, the expression:

ρC(mn→sid)(S1)

returns a new relation called C whose schema is:

C(sid: string , name: string , age: integer , email: string)

i.e., the same schema as S1’s schema, but with the mn field renamed to sid.

I.4.1.4 Joins

Joins are some of the most commonly used operations in the relational model.
However, there is no explicit need to define a special join operator, other than conve-
nience. A join is essentially a selection with a predicate of the form col1 rop col2 A join is a combina-

tion of the selection and
cross-product operators.

where rop ∈ {>, <,=, 6=,≥,≤} over a cross-product of two relations. It can be
defined as follows

R ./p S = σp(R× S)

where p is called the join predicate.
Consider, for example, the two relation instances of the Students and Takes rela-

tions, shown in Figure I.14(a) and Figure I.14(b). If we join the two relation instances
by applying the operation

Students ./Students.mn=Takes.mn Takes

then the resulting relation instance will be the one shown in Figure I.14(c). Note that
the result consists of the combination of the two participating tables’ schemata, since
a join necessarily implies a self-selection over a cross-product.

The natural join is a refinement of the join operator and it is helpful in situations
like the one described in Figure I.14 where essentially there is a natural way of joining
the two participating relations: they have fields of the same name (mn in this case).
If this is the case, then the join predicate can be omitted and the join operation can
be simply expressed as Students ./ Takes. Additionally, the joining attribute of one
of the relations is dropped from the final schema so that there is no information
duplication. In the previous example, one of the two mn columns would be omitted
from the result schema.

I.4.2 Tuple Relational Calculus

Tuple relational calculus is another powerful mechanism allowing one to express
queries over relationally organised data. The usefulness of tuple relational calculus

24 Structured Data [CHAPTER I

mn name age email

s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0378435 Helen 20 helen@phys

s0189034 Peter 22 peter@math

mn code mark

s0456782 inf1 80

s0412375 geo1 78

s0412375 inf1 56

s0189034 math1 62

(a) Students (b) Takes
(mn) name age email

s0456782 John 18 john@inf

s0412375 Mary 18 mary@inf

s0189034 Peter 22 peter@math

(mn) code mark

s0456782 inf1 80

s0412375 geo1 78

s0412375 inf1 56

s0189034 math1 62

s0412375 Mary 18 mary@inf

(c) Students ./Students.mn=Takes.mn Takes

Figure I.14: An example of a join operation

lies in the fact that it is entirely declarative in the sense that when expressing a query,
one only needs to specify the properties that should hold in the result set.

The key concept in tuple relational calculus is a tuple variable that ranges over the
tuples of a relation instance. Queries in tuple relational calculus are expressed as:Tuple relational cal-

culus is first order pred-
icate logic extended for
the relational model.

{T | p(T)}

where T is a tuple variable and p(T) is a first order logic formula that evaluates to
either true or false. The result of the query is an instantiation of all tuples t ∈ T for
which p(t) evaluates to true.

For instance, the following query identifies all students older than 18:

{S | S ∈ Students ∧ S.age > 18}

To evaluate this query, the tuple variable S is instantiated over all tuples in the Stu-
dents table; the predicate S.age > age is then evaluated on the tuple. If the predi-
cate evaluated to true the tuple is propagated to the output; otherwise it is dropped.
Note that this tuple relational calculus query is equivalent to relational algebra query
σage>18(Students).

I.4.2.1 Formal Syntax of Tuple Relational Calculus Queries

Let Rel be a relation name, R and S be tuple variables, a an attribute of R and
b an attribute of S. Let op denote a logical operator in the set {>, <,=, 6=,≥,≤}.
The first key concept is an atomic formula which is one of the following:

• R ∈ Rel;

§ I.4] Querying and Manipulation 25

• R.a op S.b;

• R.a op constant, or constant op R.a.

A formula is recursively defined to be a combination of formulae where p and
q are themselves formulae and p(R) denotes a formula in which tuple variable R

appears:

• any composite formula;

• ¬p, p ∧ q, p ∨ q, or p ⇒ q;

• ∃R(p(R)), where R is a tuple variable;

• ∀R(p(R)), where R is a tuple variable.

The semantics of these should be obvious from logic. Sometimes, the following
notational conventions are used:

• in the case of existential quantifiers, instead of denoting the domain of a tuple
variable as a conjunct in a formula, we apply it as a separate step outside the for-
mula, i.e., instead of writing ∃R(R ∈ Rel ∧ p(R)), we write ∃R ∈ Rel(p(R));

• in the case of universal quantifiers, we follow a similar route if we have implica-
tion, i.e., instead of writing ∀R(R ∈ Rel ⇒ p(R)), we write ∀R ∈ Rel(p(R)).

Finally, it is possible to implicitly declare resulting schemata by introducing tuple
variables. For instance, the following query in tuple-relational calculus introduces the
resulting relation P with two fields: name and age:

{P | ∃S ∈ Students(S.age > 20 ∧ P.name = S.name ∧ P.age = S.age)}

i.e., the atomic formulae P.name = S.name and P.age = S.age give values to the
fields of the resulting tuples.

I.4.3 Examples

In the sequence, we shall present examples queries expressed in both relational
algebra and tuple relational calculus. If and when necessary, we shall provide a more
detailed explanation of one can go about constructing the expressions.

Example I.1: Find the names of students who are taking Informatics 1.
A relational algebra expression for this query is:

πStudents.name(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Informatics 1’(Courses))))

26 Structured Data [CHAPTER I

It is sometimes easier to see the sequence of operations by drawing a tree diagram
of the relational algebra expression; this is shown in Figure I.15(a). Note how the
operators are actually applied:

• all three relations will need to be accessed:

– Students, in order to retrieve the students’ names;

– Courses, in order to select only the course we are interested in; and

– Takes because it stores information about which students are taking
which courses;

• a selection on the Courses relation is applied so the information on only the
relevant course (Informatics 1) is returned;

• the Students relation is joined with Takes (by comparing the key-foreign key
values) so we know the codes of the courses the student is taking;

• the result (now with complete course code information) is joined with the
Courses relation (after the irrelevant courses have been filtered out) again by
comparing key-foreign key values) so we have information on students taking
Informatics 1;

• finally, we are only interested in those students’ names, so we project only this
attribute in order to compute the output.

The equivalent tuple relational calculus expression for this query is the following:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses
(C.name = ’Informatics 1’ ∧ C.code = T.code ∧

S.mn = T.mn ∧ P.name = S.name)}

Again, note the correspondence with the steps we took for constructing the relational
algebra expression: (i) we have introduced one tuple variable for each relation that
needs to be accessed; (ii) a formula of atomic formulae is used to specify the properties
of the output; (iii) the schema of the output is implicitly declared by a fourth tuple
variable (P), with a single attribute (name); (iv) the values for P.name are assigned by
adding the relevant atomic formula (P.name = S.name). 4

Example I.2: Find the names of all courses taken by Joe.
A relational algebra expression for this query is the following:

πCourses.name((σname=’Joe’(Students)) ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code Courses))

§ I.4] Querying and Manipulation 27

Students Takes

⋈Students.mn = Takes.mn

⋈Takes.code = Courses.code

πStudents.name

σname='Informatics 1'

Courses Students

Takes

Courses

σname='Joe'

⋈Students.mn = Takes.mn

⋈Takes.code = Courses.code

πCourses.name

(a) (b)

Figure I.15: Relational algebra expressions for (a) Example I.1 and (b) Example I.2

while a tree-like diagram of the expression is shown in Figure I.15(b). A tuple rela-
tional calculus for this query is:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses
(S.name = ’Joe’ ∧ S.mn = T.mn ∧

C.code = T.code ∧ P.name = C.name)}

Note how this query and the query of Example I.1 are quite similar. Their differences
lie in which input relation is filtered — Courses in Example I.1, Students in this
example — and information from which relation we are interested in the output —
Students in Example I.1, Courses in this example. Intuitively, one would expect the
mechanisms employed in answering the queries to be quite similar as well. This is
indeed the case, as is evident from both the relational algebra and the tuple relational
calculus expressions. 4

Example I.3: Find the names of all students who are taking Informatics 1 or Geology
1.

One way of expressing this query in relational algebra is the following:

πStudents.name(

(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code (σname=‘Informatics 1’(Courses)))) ∪
(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code (σname=‘Geology 1’(Courses))))))

i.e., “reproduce” the query used in Example I.1 that retrieves the students taking
Informatics 1, compute the union of those students with students taking Geology 1
(so we now have students taking Informatics 1 or Geology 1 — or both) and then

28 Structured Data [CHAPTER I

making the final projection of those students’ names. There is, however, a much
better way of expressing this query using the union set operator by observing that we
only need the union at the level of the Courses relation. So we only need compute
the union of information relevant to Informatics 1 and Geology 1 and then go about
forming the query as we did in the previous case. The relational algebra expression
after this observation becomes:

πStudents.name(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Informatics 1’(Courses) ∪ σname=‘Geology 1’(Courses))))

At this point we can improve the expression even more, by observing that we can
combine the two selections and the union operation in the same selection operator
by introducing a disjunction of the two predicates as follows:

πStudents.name(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Informatics 1’∨name=‘Geology 1’(Courses))))

Note how we started with a cumbersome and complicated expression and ended up
in a much more elegant and readable relational algebra representation of the query.
This example introduces certain concepts of query optimisation. If one aims at build-
ing a system employing these principles in order to answer user queries over relational
schemata, there are ways of “re-writing” queries in equivalent forms. Some of these
forms will be computationally cheaper than others. Query optimisation is the pro-
cess by which one decides which equivalent form to use when answering a query by
enumerating each alternative, estimating the computational cost of each alternative
and picking the cheapest.

Moving on to tuple relational calculus, a quite straightforward way of expressing
this query is the following:

{P | ∃S ∈ Students ∃T ∈ Takes ∃C ∈ Courses
((C.name = ’Informatics 1’ ∨ C.name = ’Geology 1’) ∧

C.code = T.code ∧ S.mn = T.mn ∧ P.name = S.name)}

Note how this representation is much closer to the simplest relational algebra repre-
sentation of the query. This is in essence the power of tuple relational calculus. It is
declarative in the sense that we need not organise the order in which operations are
applied. We only need to declare the properties of the results. In fact, tuple relational
calculus is so elegant a representation of queries, that it forms the basis of SQL, i.e.,
the standard query language used by commercial relational database management
systems. 4

§ I.4] Querying and Manipulation 29

Example I.4: Find the names of students who are taking both Informatics 1 and
Geology 1.

One might be tempted to use the last relational algebra expression from Exam-
ple I.3, but replace the disjunction in the selection predicate with a conjunction as
follows:

πStudents.name(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code

(σname=‘Informatics 1’∧name=‘Geology 1’(Courses))))

This, however, would be incorrect. The reason is that it tries to retrieve courses
that are both named Informatics 1 and Geology 1 at the same time — which is not
possible. Recall that a selection operator evaluates its predicate on every row of its
input. This selection operation, although perfectly legal, would return the empty set
as a result. The empty set would also be returned if instead of a conjunction in the
predicate, one used a set intersection of the form:

σname=‘Informatics 1’(Courses) ∩ σname=‘Geology 1’(Courses)

for exactly the same reasons. The correct way of expressing this query in relational
algebra is actually computing the intersection of students who are taking Informatics
1 and students who are taking Geology 1, in the same manner of the first approach
taken in Example I.3:

πStudents.name(

(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code (σname=‘Informatics 1’(Courses)))) ∩
(Students ./Students.mn=Takes.mn

(Takes ./Takes.code=Courses.code (σname=‘Geology 1’(Courses))))))

The tuple relational calculus expression for this query is:

{P | ∃S ∈ Students ∧ ∀C ∈ Courses
((Cname = ’Informatics 1’ ∨ Cname = ’Geology 1’) ⇒

(∃T ∈ Takes(T.mn = S.mn ∧ T.code = S.code ∧

P.name = S.name)))}

where we make use of implication. This query can also be read as follows: retrieve all
students for which if there is a course named Informatics 1 or Geology 1, then the
student is taking that course. Again, note how more elegant it is to express this query

30 Structured Data [CHAPTER I

in tuple relational calculus as opposed to the cumbersome representation (through
division) in relational algebra. 4

Example I.5: Find the names of students who are taking all courses.
This query can be better expressed in relational algebra if we introduce the con-

cept of division. In general all queries referring to all tuples of a relation can be readily
expressed by using division.

Consider two relation instancesA and B in whichA the schema ofA is a superset
of the schema of B. Let s(A) be the schema of A and s(B) be the schema of B;
s(B) ⊆ s(A) holds. Division A/B is defined as the set of all tuples in A with the
values for s(A) − s(B) fixed, such that for every tuple in B with the values for s(B)

fixed there is a tuple in A.
It is helpful to consider the analogy to integer division. For integers A and B,

A/B is the largest integer Q such that Q · B ≤ A. For relation instances A and B,
A/B is the largest relation instance Q such that Q × B ⊆ A. Let us now express
division in terms of the basic relational operators. The basic idea is to compute the
values for s(A)−s(B) in A that are not disqualified. A set of values for s(A)−s(B)

if by filling in values for s(B) from B we obtain a value for s(A) that is not in A.
The following relational algebra expression computed the disqualified values:

πs(A)−s(B)((πs(A)−s(B)(A)× B) − A)

so division A/B can be defined as:

πs(A)−s(B)(A) − πs(A)−s(B)((πs(A)−s(B)(A)× B) − A)

The complete query then becomes:

ρ(Tempnumbers, πmn, code(Takes)/πmn(Courses))
πname(Tempnumbers ./Tempnumbers.mn = Students.mn Students)

where we have introduced a renaming operation to avoid cluttering the expression.
Let us now “dissect” how this expression works:

• the division between Takes and Courses returns all matriculation numbers such
that a combination of 〈matriculation number, course code 〉 exists in Courses;
these are the matriculation number of all students taking all courses;

• this result is renamed to another relation instance, Tempnumbers;

• the Tempnumbers relation is then joined on matriculation numbers with the
Students relation in order to retrieve name information for the relevant stu-
dents; and

§ I.5] Semi-structured Data and XML 31

• finally, the names of the students are projected to form the output.

The query expressed in tuple relational calculus is as follows:

{P | ∃S ∈ Students ∀C ∈ Courses
(∃T ∈ Takes (C.code = T.code ∧ S.mn = T.mn ∧

P.name = S.name))}

Note how easy it is to express this query in tuple relational calculus. The reason is
the existence of universal quantifiers. Another way of expressing this query is: find
the names of students such that for each existing course, they are taking this course
— which is exactly what the above formula expresses. 4

I.5 Semi-structured Data and XML

So far, we have dealt with completely structured data. In fact, a good part of the
discussion has been about capturing the conceptual properties of the data and creat-
ing a schema based on these properties. Schema information is sometimes referred to
as metadata, i.e., data about the data.4

Sometimes, however, the data we wish to handle do not always have well-defined
schemata, or there might be multiple ways of representing them. It may even be
possible that we have free-flow data that we merely wish to annotate in a meaningful
way. Consider for instance, these very lecture notes. When typesetting them, one is
not interested in their meaning; they are only interested in the paragraph formatting,
whether a piece of text is a section heading, how it is actually displayed on paper
and so on. In that respect, the typesetting program only needs to know certain rel-
evant typesetting information, such as, for instance, that the title of this section is
“Semi-structured Data and XML” and that section headings should appear horizon-
tally centered in the page. The actual piece of text used to create the section heading
is:
\section{Semi-structured Data and XML}

which contains enough information to instruct its typesetting semantics within the
text.

On the other hand, one performing some natural language analysis of this text,
may be interested in its grammatical or syntax properties. For instance, in the follow-
ing sentence: “This is a meaningful sentence”, they might be interested in the fact
that is is the verb and meaningful is an adjective. So they may choose to write the
sentence as:

4This is a well-known abstraction in relational databases; even metadata information is stored in
collection of special tables of the system, called the catalog. The system can then query the catalog
tables in the same way that it queries any data table in order to obtain information about the data that
is stored.

32 Structured Data [CHAPTER I

This <verb>is</verb> a <adjective>meaningful</adjective>
sentence.

Both are examples of what is called marking up the text, i.e., a way of mixing both
data (e.g., the words) along with its semantics (e.g., a section heading in the first case,
or grammatical properties in the second case). The latter example (i.e., surrounding
text with certain “labels”) is what constitutes a general class of marking up technology,
referred to as markup languages. The currently most dominant such language is XML,
which stands for eXtensible Markup Language. In fact, XML is so widely spread that
most of the relational modeling examples discussed may be expressed in XML.

Consider, for example, data about students, and in particular the table shown in
Figure I.9. One way of expressing it in such a scheme is the following:

<students>
<student>

<mn> s0456782 </mn> <name> John </name>
<age> 18 </age> <email> john@inf </email>

</student>
<student>

<mn> s0412375 </mn> <name> Mary </name>
<age> 18 </age> <email> mary@inf </email>

</student>
<student>

<mn> s0378435 </mn> <name> Helen </name>
<age> 20 </age> <email> helen@phys </email>

</student>
<student>

<mn> s0189034 </mn> <name> Peter </name>
<age> 22 </age> <email> peter@math </email>

</student>
</students>

Note that we are essentially mixing both metadata and data in the same represen-
tation. Just by reading the text, we know that we are dealing with a collection of
students , and each student has a certain amount of information associated with
them — namely, a matriculation number (mn), a name , their age , and an email
address (email). However, we do not have that descriptive information readily
available in the sense of having a schema associated with all students. Rather, there
is reasoning involved; we need to enumerate all students and figure out that they all
share the same schema.

On the other hand, it is easier for the metadata to evolve — it is extensible in that
sense. If we decide to make a note for one of the students, say Peter, we can easily
add mark-up information. For instance, we may choose to make a note that Peter

§ I.5] Semi-structured Data and XML 33

has been granted an extension for submitting his first practical assignment. We can
do so by modifying his entry as follows:

<students>
...
<student>

<mn> s0189034 </mn> <name> Peter </name>
<age> 22 </age> <email> peter@math </email>
<note> Has extension for first practical </note>

</student>
</students>

This does not affect the rest of the student entries in any way; it also does not spoil
the fact that all students continue to share a common core of information. It only
adds to this particular student entry.

Constructs like XML and marking up are the best way of representing data for the
problem at hand. These concepts will be presented in more detail in the next chapter.

34 Structured Data [CHAPTER I

CHAPTER II
SEMI-STRUCTURED DATA

This chapter deals with unstructured and semi-structured data, focusing on
linguistic data (corpora). We will discuss how such data can be acquired
in a systematic way, and give an overview of annotation and metadata.
We will then describe ways of querying collections of semi-structured data
and introduce information retrieval as an application that relies on semi-
structured data. Finally, we will deal with evaluation, i.e., with techniques
that measure the performance of a system that processes data.

II.1 Basic Concepts

The previous chapter dealt with data that are inherently structured. For structured
data , information regarding the properties of the data is available at the outset, so structured data
that highly structured ways of describing, acquiring, and processing these data can
be developed. The entity/relationship model and the relational model presented in
the previous chapter are an important example for data models for handling struc-
tured data. Such models can be formalized in logical and algebraic terms, and these
formalizations typically form the basis for contemporary database technology.

However, types of data exists that do not lend themselves readily to formalization
and processing in a structured way. These data are unstructured data , i.e., data for unstructured data
which the properties relevant for their formalization and processing are not known
at the outset. An example are data about bacteria that a biologist might encounter
when they study a soil sample. It is not clear in advance which species they will
encounter and what the properties of these species are; also the relationships between
the species are probably not known initially; interaction between different types of
bacteria might take place that cannot be anticipated. Also, the soil sample might be
dynamic, the organisms present in can multiply or die. It is exceedingly difficult to
come up with an a priori database scheme that captures this situation adequately.

A second example of unstructured data is textual data : Take a piece of text, e.g., textual data
extracted from a web site. The text does not have an inherent structure, except in a
trivial sense: it is a linear sequence of words (probably interspersed with headings and
links in the case of a text from a web site). It does not make a lot of sense to enter the
text into a database; it is not even clear how this could be done (maybe each word
would be an entity, with a relation precedes to link words?).

The text can be enriched with additional structure, but this structure is heavily
dependent on the intended application, or on the scientific question we want to ask

35

36 Semi-structured Data [CHAPTER II

“And the ark rested in the seventh month, on the seventh day of the month
upon the mountains of Ararat.” Noah’s ark did not come to rest on Mount
Ararat (Massis in Armenian) but on the mountains of Ararat or Armenia. It
is very strongly believed that the first five books (Pentateuch) of the Bible
were written by Moses and another Moses of Khorene stated in his history
that Ararat was the central portion of Armenia.

Figure II.1: Excerpt from a corpus

about the text. For example we could identify all verbs in the text and give them a
special label. Then a list of verbs can be compiled from the text, e.g., for the purpose
of building a dictionary. This process of adding structure to unstructured data is
called annotation ; the result of enriching unstructured data with annotation will beannotation
referred to as semi-structured data .semi-structured data

In the remainder of this section, we will provide an overview of the most impor-
tant concepts relating to semi-structured data, and sketch some of the applications in
which semi-structured data play a role.

II.1.1 Corpus Data

The only forms of semi-structured data that we will deal with in detail in this
chapter are linguistic data. A collection of textual or spoken data is referred to as a cor-
pus (plural corpora), if it meets a number of criteria for corpora (following (McEnerycorpus

criteria for corpora and Wilson, 2001, Ch. 2)):
• it is sampled in a certain way;

• it is finite in size;

• it is available in machine-readable form;

• it typically serves as a standard reference.

Example II.1: We can therefore ask ourselves: Is a single email a corpus? Is a
collection of 1,000 emails a corpus? Is the novel Harry Potter a corpus? The answers
to these questions will be come clear by the end of this section. 4

Example II.2: Let us look at excerpts from two different corpora, given in Fig-
ure II.1 and II.2. Where do you think these excerpts were taken from? 4

II.1.2 Questions Corpora Can Answer

Corpora can serve as a tool for answering empirical questions in linguistics and re-empirical questions
lated fields: corpora are not simply sets of words, but can be analyzed using statistical

§ II.1] Basic Concepts 37

David Beckham is lending his voice to Vodafone’s official voice-mail service,
the first celebrity ever to allow such an extraordinary endorsement. Sub-
scribers to the mobile phone company can now have a recording of Beckam’s
squeaky voice informing callers that “This is the voicemail service for X.
Please leave a message after the tone”. The move is part of a multi-million
pound deal with the Manchester United star and opens up a whole new line
of business for celebrities seeking extra cash while they are still in the lime-
light.

Figure II.2: Excerpt from another corpus

“My dear fellow.” said Sherlock Holmes as we sat on either
a realistic effect,” remarked Holmes. “This is wanting in the
said Holmes, taking the paper and glancing his eye down
“I have seen those symptoms before,” said Holmes, throwing
merchant-man behind a tiny pilot boat. Sherlock Holmes welcomed
“You’ve heard about me, Mr. Holmes,” she cried, “else how

Figure II.3: Lines containing the word Holmes in A Case of Identity

and other tools, and the results of these analyses can be used to test hypotheses about
language use, or to discover new facts about language structure.

Corpora are also useful for addressing engineering questions : they represent the engineering questions
type of data that computer systems are exposed to if they process linguistic input.
Engineers therefore rely on corpora to develop text-based or speech-based computer
applications. Algorithms exist that extract regularities from corpus data, which is
vital for building language processing systems that learn automatically from input
data, that are robust (i.e., tolerant to errors and noise), and that are able to process a
wide range of language input accurately.

Let us deal with the empirical aspects of corpus processing first. Assume we have
a corpus that consists of the Sherlock Holmes story A Case of Identity.

Example II.3: Simple questions we could ask using this corpus are:
1. Find all lines containing the word Holmes.

2. Find all lines beginning with the word Holmes.

3. Find all lines starting with an upper case letter.

The results of these queries are depicted in Figures II.3, II.4, and II.5. 4
In more general terms, there are certain important things that we want to find

out about a corpus before we can process it effectively. This includes the token count

38 Semi-structured Data [CHAPTER II

Holmes, when she married again so soon after father’s death,
Holmes alone, however, half asleep, with his long, thin form
Holmes. “He has written to me to say that he would be here at
Holmes had been talking, and he rose from his chair now with a

Figure II.4: Lines beginning with the word Holmes in A Case of Identity

A Case of Identity
The husband was a teetotaler, there was no other woman
Take a pinch of snuff, Doctor, and acknowledge that I
The larger crimes are apt to be the simpler, for the
And yet even here we may discriminate.
When a woman has a secret
Etherege, whose husband you found so easy when the

Figure II.5: Lines starting with an upper case letter in A Case of Identity

: how big is the corpus, i.e., how many tokens (words, punctuation marks, etc.) token count
does it contain in total? This figure is often denoted by N. The token count needs
to be distinguished from the type count which tells use how many different tokenstype count
there are in the corpus. For examples, in our example corpus there are many different
tokens (occurrences) of the word typeHolmes. Note that the type count of a corpus is
always lower than the token count (or equal if all the tokens in the corpus only occur
once). Tokens and types are typically words, but they can also be punctuation marks,
sentence boundary markers, paragraph breaks, or other items that might occur in a
corpus.

The next important concept is the absolute frequency of a type, often denoted asabsolute frequency
f(t) (for frequency) or c(t) (for count). The frequency f(t) of a type t is defined
simply the number of occurrences of t in a corpus. At the same time, the relative
frequency of a type is the frequency of t normalized by the corpus size, denoted asrelative frequency
f(t)/N. Using relative frequencies, we can compare the frequencies of types across
different corpora.

Example II.4: An important reference corpus for British English is the British
National Corpus (BNC; Burnard (1995)). Table II.1 compares some counts from
the BNC with counts from our sample corpus A Case of Identity. As we can see from
this example, the absolute frequency of words such as Sherlock and Holmes is higher
in the BNC. The relative frequency of these words is higher in A Case of Identity
(which is after all a Sherlock Holmes story). 4

§ II.1] Basic Concepts 39

BNC A Case of Identity
Token count N 100,000,000 7,006
Type count 636,397 1,621
f(Holmes) 890 46
f(Sherlock) 209 7
f(Holmes)/N .0000089 .0066
f(Sherlock)/N .00000209 .000999

Table II.1: Some absolute and relative frequencies in A case of Identity

BNC A Case of Identity
6184914 the 350 the
3997762 be 212 and
2941372 of 189 to
2125397 a 167 of
1812161 in 163 a
1372253 have 158 I
1088577 it 132 that
917292 to 117 it

Table II.2: The most frequent words in the BNC and in A case of Identity

II.1.3 Obtaining Corpus Counts

Using the concept of absolute frequency, we can ask questions such as: what are
the most frequent words in a given corpus? This question can be answered by simply
counting all word types in the corpus, and tabulating them in an ordered list.

Example II.5: Table II.2 lists the ten most frequent words in the BNC and in
A Case of Identity. As we can see, the two lists are remarkably similar: the article
the is the most frequent word in both corpora, and prepositions like of and to and
pronouns like it appear in both lists. 4

The frequencies of single words are referred to as unigram frequencies . This unigram frequencies
notion can be generalized: we can talk about bigram frequencies (frequencies of pairs
of words), trigram frequencies (frequencies of triples of words), or in the general case
of n-gram frequencies (frequencies of n-tuples of words). n-gram

Example II.6: Table II.3 lists the five most frequent n-grams in A Case of Identity,
for n = 2 . . . 4. The larger the n, the more linguistically meaningful the units
become. 4

This example also illustrates another important concept. As can be seen from
Table II.3, the n-gram frequencies get smaller with increasing n. This is of course

40 Semi-structured Data [CHAPTER II

Bigrams Trigrams 4-grams
40 of the 5 there was no 2 very morning of the
23 in the 5 Mr. Hosmer Angel 2 use of the money
21 to the 4 to say that 2 the very morning of
21 that I 4 that it was 2 the use of the
20 at the 4 that it is 2 the King of Bohemia

Table II.3: The most frequent n-grams in A case of Identity

due to the fact that there are more and more possible combinations of words the larger
the n gets, and we are less and less likely to encounter each of these combinations.
This phenomenon is know as data sparseness : the counts for larger and linguisticdata sparseness
units become smaller and smaller. Even for trigrams and 4-grams, the data sparseness
is so severe that many word combinations have a frequency of zero, even in a large
corpus such as the BNC.

II.1.4 Building Applications Using Corpora

Corpora are used extensively in two areas of informatics: natural language process-
ing (NLP; also called computational linguistics) is the subdiscipline that has the aimnatural language pro-

cessing of building computer systems that understand or produce text. Speech processing is
Speech processing the subdiscipline that develops systems that understand or produce spoken language.

Both subdisciplines rely heavily on techniques developed in other disciplines to ex-
tract statistical regularities from text or speech corpora. These disciplines include
probability theory, statistics, information theory, and machine learning.

Three typical NLP applications that rely heavily on the use of corpus data are:
• Information retrieval (IR) is concerned with developing algorithms and modelsInformation retrieval
for retrieving information from document collections. For example, given a
corpus of newspaper articles and a set of keywords (a query), the task is to
return a ranked list of relevant newspaper articles. IR can also be applied to
web data – search engines such as Google (see Figure II.6) are probably the
most well-known IR systems. We will deal with information retrieval in more
detail in Section II.4.

• Summarization is the task of taking a text and compressing it, i.e., producing anSummarization
abstract or summary that is considerably shorter than the original document.
Again, a well-know example is provided by Google (see Figure II.6): with every
document that the search engine returns, it also provides a short summary of
the document’s content. Corpora are an important tool for building summa-
rizers: given a collection of texts and their (manually produced) summaries, we
can develop algorithms that learn how to generate these summaries automati-

§ II.2] Data Acquisition and Annotation 41

Figure II.6: A well-know example of an information retrieval system

cally.

• Machine Translation (MT) is considered by many people the ultimate goal Machine Translation
of natural language processing, and it is correspondingly difficult. The task
is to take a text in a source language and turn it into a well-formed text
in the target language, while preserving its meaning. There are a num-
ber of commercial MT systems available, and free systems such as Babelfish
(http://world.altavista.com/) exist on the web. Again, modern
MT technology relies heavily on corpus data, typically aligned corpora, i.e.,
texts in which the sentences in the source language are manually aligned with
the corresponding sentences in the target language. These aligned corpora can
be used to learn translation correspondences, based on which the MT system
can then translate new texts in the source language.

II.2 Data Acquisition and Annotation

As we have seen in Section II.1.1, McEnery and Wilson (2001, Ch. 2) define a
corpus as a collection of textual or speech data that is finite in size, machine readable,

http://world.altavista.com/

42 Semi-structured Data [CHAPTER II

and can serve as a reference. In this section we will discuss a number of standard
corpora and explain their design. We will also deal with two important issues relating
to corpus design: how to acquire corpus data in a systematic way (balancing and
sampling) and how to add information to a corpus (annotation).

II.2.1 Balancing and Sampling

A balanced corpus is designed to contain material that is representative of thebalanced corpus
language, ideally reflecting the whole range of linguistic material that native speakers
are exposed to. For example, for a balanced text corpus, we will want to include texts
from books, newspapers, letters, etc. Furthermore, the material from each source
should be subject to sampling , i.e., the steps should be taken to ensure that thesampling
material is representative of the source. If our material is newspaper text, then we
will want to randomly select texts from a range of different newspapers, and from
different issues of the same newspaper (within a pre-defined period of time, e.g., one
year).

More generally, a balanced corpus is typically designed to contain representative
samples from several language types, and from a wide range of genres, domains, and
media. The language type of a corpus indicates what kind of language the materiallanguage type
is drawn from. This can be edited text (e.g., articles, books, newswire), spontaneous
text (e.g., email, Usenet news), spontaneous speech (e.g., conversations, dialogs), or
scripted speech (e.g., formal speeches). The genre of a text refers to a more fine-genre
grained classification of the type of material. Examples for genres are 18th century
novels, scientific articles, movie reviews, or parliamentary debates. Different genres
typically differ in many linguistic parameters, such as writing style, level of formality,
grammatical complexity. The domain of the material indicates what the material isdomain
about. Example domains are crime, travel, biology, or law. Finally, the media of amedia
corpus are its physical realization; this can be text, audio, transcribed speech, video,
etc.

We will illustrate these concepts using two well-know examples of standard ref-
erence corpora: the Brown Corpus and the British National Corpus. The Brown
Corpus is a balanced corpus of written American English. It is famous for being oneBrown Corpus
of the earliest machine-readable corpora, and was developed by Nelson Francis and
Henry Kučera at Brown university in the 1960s (Francis et al., 1982). The corpus
consists of one million words of American English texts printed in 1961. The texts
for the corpus were sampled from 15 different genres and domain to make the corpus
a good standard reference.

Example II.7: Table II.4 contains on overview of the genres and domains repre-
sented in the corpus. 4

Another important reference corpus is the British National Corpus (BNC;British National Corpus

§ II.2] Data Acquisition and Annotation 43

Genre Domain Size
Press Reportage 44 texts
Press Editorial 27 texts
Press Reviews 17 texts
– Religion 17 texts
– Skill and hobbies 36 texts
– Popular lore 48 texts
– Belles-lettres 75 texts
Miscellaneous Government and house organs 30 texts
– Learned 80 texts
Fiction General 29 texts
Fiction Mystery 24 texts
Fiction Science 6 texts
Fiction Adventure 29 texts
Fiction Romance 29 texts
– Humor 9 texts

Table II.4: Genres and domains in the Brown corpus

Burnard (1995)). The BNC is a large, synchronic corpus of British English, con-
sisting of 90 million words of text and 10 million words of speech. Like the Brown
corpus, the BNC is a balanced corpus, i.e., it was compiled so as to represent a wide
range of present day British English. The written part includes samples from newspa-
pers, magazines, books (both academic and fiction), letters, and school and university
essays, among other kinds of text. The spoken part consists of spontaneous conver-
sations, recorded from volunteers balanced by age, region, and social class. Other
samples of spoken language are also included, ranging from business or government
meetings to radio shows and phone-ins.

The fact that the BNC is a balanced corpus makes it particularly attractive for lin-
guistic research: frequencies obtained from the BNC should be more representative
of the language experience of native speakers than the ones obtained from unbalanced
corpora. Unbalanced corpora, such as the Penn Treebank (which will be discussed
later), typically only represent one genre. All the texts in the Penn Treebank are drawn
from the Wall Street Journal, a financial newspaper.

In Table II.5, we compare the Brown Corpus, the BNC, and the Penn Treebank
with other copora in terms of size, genre, modality, and language.

II.2.2 Pre-processing

Before the raw data in a corpus can be exploited for scientific or engineering tasks,
it has to be processed various ways. Two types of processing can be distinguished:

44 Semi-structured Data [CHAPTER II

Corpus Size Genre Modality Language
Brown Corpus 1M balanced text American English
British National Corpus 100M balanced text/speech British English
Penn Treebank 1M news text American English
Broadcast News Corpus 300k news speech 7 languages
MapTask Corpus 147k dialog speech British English
CallHome Corpus 50k dialog speech 6 languages

Table II.5: Comparison of some standard corpora

pre-processing, which identifies the basic units in a corpus (words, sentences), and
annotation, which enriches the corpus with information that is useful for answering
a given research question or solving a given engineering task.

We will discuss pre-processing first. Tokenization is a pre-processing step in whichTokenization
raw textual data is divided into units called tokens. Each token is either a word
or a number or a punctuation mark. (Recall the type/token distinction from Sec-
tion II.1.2.) A word is defined here as a continuous string of alphanumeric charactersword
delineated by whitespace. Whitespaces can be space, tab, or newline.

Example II.8: The definition of a word seems straightforward enough. However,
tokenization can present problems in some cases:

• Words that contain numbers, punctuation marks, or symbols: b2b, ama-
zon.com,Micro$oft.

• Words that include an apostrophe: John’s, isn’t, rock’n’roll.

• Hyphenated words: child-as-required-yuppie-possession.

• Non-English words: cul de sac, Zeitgeist.

4
While there are some problem cases, tokenization can be automated and highly

accurate tokenizers are available for English. Note however that tokenization is much
harder for other languages. In Chinese, for example, words often consist of several
characters – while there is a white space between characters, the boundaries between
words are not marked. This makes tokenization (i.e., word boundary detection) a
difficult task for Chinese and other East Asian languages.

Even in English, word boundary detection is easy only for text; there are no overt
boundaries (such as pauses, etc.) between the words in spoken English. The task of
speech segmentation (tokenization of spoken input) is therefore much harder than
the tokenization of textual input. (At least if done automatically; human beings can
effortlessly and reliably segment the speech stream into words.)

§ II.2] Data Acquisition and Annotation 45

The next pre-processing set is typically sentence boundary detection , i.e., the tasksentence boundary de-
tection of identifying where sentences start and end in a text. As a first approximation,

we can define a sentence as a string of words ending in a period, question mark or
exclamation mark. This definition, however, is correct in only about 90% of the
cases, i.e., one in ten sentences is identified incorrectly, which is an alarmingly high
number.

Example II.9: Problematic cases for sentence boundary detection include the
following:

• Dr. Foster went to Glasgow.

• He said “rubbish!”.

• He lost cash on lastminute.com.

4
A more accurate algorithm for sentence boundary detection therefore has to take

into account periods at the end of abbreviations and multiple punctuation marks,
and quotation marks.

Example II.10: Here is an example for a more sophisticated sentence boundary
detection algorithm:

• Hypothesize a sentence boundary after: . ? !

• If a quotation mark follows the boundary, move the boundary past the quota-
tion mark.

• Disqualify a period if:

– it is preceded by a known abbreviation that is not usually sentence final,
but is usually followed by a capitalized proper name: Prof. or vs.;

– it is preceded by a known abbreviation and not followed by an uppercase
word: etc. or Jr.

• Disqualify a boundary with a ? or ! if it is followed by a lowercase letter.

• Regard other hypothesized sentences boundaries all correct.

4
Note that this algorithm is not only more complicated, but it also requires addi-

tional resources, such as a dictionary of abbreviations.

46 Semi-structured Data [CHAPTER II

<head type=MAIN>
<s n="233"><w NN2>Inspectors <w PRF>of <w NN2>schools <c PUQ>&bquo;
<w AV0>poorly <w VVN>equipped <w PRP>for <w NN1>curriculum
<c PUQ>&equo;
</head>
<head type=BYLINE>
<s n="234"><w PRP>By <w NP0>PETER <w NP0>WILBY
</head>
<p>
<s n="235"><w NN1>SCHOOL <w NN2>INSPECTORS <w VVN>employed
<w PRP>by <w AJ0>local <w NN2>authorities <w VBB>are <w AV0>poorly
<w VVN>equipped <w PRP>for <w DPS>their <w AJ0-NN1>future
<w NN1>role <w PRF>of <w VVG>monitoring <w AT0>the <w AJ0>national
<w NN1>curriculum<c PUN>, <w AT0>a <w NN1>report <w PRP>from
<w AT0> the <w NN1>Audit <w NN1>Commission <w PRP>for
<w NN1-AJ0>Local <w NN2>Authorities <w VVZ>says <w AV0>today
<c PUN>.
</p>

Figure II.7: Extract of the BNC marked up in XML

II.2.3 Markup Languages

If we want to add additional information to a pre-processed corpus, then we need
a markup language to do this. A markup language is basically a means of keepingmarkup language
different types of information in a corpus apart. In particular, it can be used the
separate data and metadata (i.e., data about the data). In the case of corpora, themetadata
data would be words and sentences in the corpus, while the metadata would be data
describing the words and sentences (e.g., indicating whether a word is a verb or an
adjective).

The most commonly used markup language is XML (Extensible Markup Lan-XML
guage). XML and metadata have already been discussed from a database perspective
in Section I. Other, closely related markup language are SGML (Standard Gener-
alized Markup Language) and HTML (Hypertext Markup Language), the language
that is used to mark up the formatting of web pages.

Example II.11: The concept of markup languages and metadata is best explained
by way of an example. Figure II.7 contains a tiny section of the BNC marked up in
XML.1 4

The basic concepts of XML and related markup languages can be explained with
respect to Figure II.7. First, we have to distinguish between entity tags and markup
tags. Entity tags denote elements of the text, such as the &bquo; which denotesEntity tags
on opening quotation mark. Entity tags have the purpose of keeping the content of

1Strictly speaking, the original BNC markup is in SGML, but the differences are not important in
the present context.

§ II.2] Data Acquisition and Annotation 47

the entity independent of its rendering (e.g., &bquo; can be rendered as " or “

or ‘). Another purpose of entity tags is to encode characters that cannot easily be
expressed in a standard character set (e.g., the tag ü represents the accented
character ü).

Markup tags encode the meta data proper. Examples in Figure II.7 include the Markup tags
tags <head> , <p> , <s> , <w> , and <c> . The <head> separates the header
from the body of the text. It takes an argument that denotes the type of header, and
requires a closing tag </head> that indicates the end of the header. Figure II.7
includes two headers: one is the main header (the headline of this newspaper article),
the other one is the byline of the article. The <p> indicates the beginning of a
paragraph; it is followed by a </p> at the end of the paragraph.

The <s> tag indicates the beginning of a sentence; it takes as its argument a
sentence number. The <w> tag marks the beginning of a word, and takes as its
argument the part of speech (POS) of the word. The part of speech of a word is its part of speech
grammatical category. For example, NN2 stands for a plural noun, PRF stands for
a preposition, and AV0 indicates an adverb. The <c> tags indicates punctuation
in the same way; its argument denotes the types of punctuation, e.g., PUQ mean
quotation mark.

Part of speech annotation is only one example for linguistic annotation that can
be applied to corpora. We will discuss this topic in more detail in the next section.

II.2.4 Corpus Annotation

Annotation adds information to a corpus that is not explicitly there, and thus
increases the utility of the corpus. The most common type of annotation is probably
part of speech tags, but other types of annotation include syntactic structure (i.e.,
information about the grammatical makeup of sentences).

Before a corpus can be annotated, an annotation scheme has to be developed, annotation scheme
typically consisting of a tag set and annotation guidelines . The tag set is an inventory tag set

annotation guidelinesof labels with which the entities in the corpus are to be marked up. The annotation
guidelines tell the annotators (typically linguistically trained native speakers) how the
tag set is to be applied. The guidelines ensure that the tag set is used consistently,
even if more than one annotator carries out the annotation, and even in ambiguous
or difficult cases. Only in very simple cases can corpus annotation succeed without
extensive, explicit guidelines.

For example, a number of standard tag sets exist for part of speech tagging of
English text. They include the Penn tag set, which is used for the Penn Treebank
and consists of 45 tags. The CLAWS tag set includes 62 tags and has been used for
POS annotating the BNC. It was later extended to 132 tags in the CLAWS2 tag set.
Another classic tag set is the Brown tag set (87 tags), which has been used to POS

48 Semi-structured Data [CHAPTER II

Category Examples CLAWS Brown Penn
Adjective happy, bad AJ0 JJ JJ
Adverb often, badly PNI CD CD
Determiner this, each DT0 DT DT
Noun aircraft, data NN0 NN NN
Noun singular woman, book NN1 NN NN
Noun plural women, books NN2 NN NN
Noun proper singular London, Michael NP0 NP NNP
Noun proper plural Australians, Methodists NP0 NPS NNPS

Table II.6: Examples of part of speech tagsets for English

annotate the Brown corpus.

Example II.12: Table II.6 contains excerpts of the CLAWS, Brown, and Penn tag
sets. 4

One might wonder if POS tagging is a task that is hard to automate. Would it not
be enough to simply look up the POS of every word in a dictionary? Unfortunately,
many words in English exhibit POS ambiguity , i.e., they can have more than onePOS ambiguity
part of speech. Consider the following example:
(1) Time flies like an arrow.

Here, time can be a singular noun or a verb, flies can be a plural noun or a verb,
and like an be a singular noun, a verb, or even a preposition. The correct part of
speech of a given word only becomes clear only in the context of the other words of
the sentence. Note that the POS ambiguity means that the sentence in (1) is highly
ambiguous, it can be assigned 2× 2× 3 = 12 different POS sequences (assuming an
and arrow are not ambiguous).

While many words can have more than one POS, most words appear most of
the time in one POS. This means that we can perform automatic POS annotation
of a text by simply assigning each word in the text its most common part of speechautomatic POS annota-

tion (we need manually annotated training data to work out the POS frequencies). This
simple approach works remarkably well, and results in an accuracy of around 90%.
However, this means that we still get about one word per sentence wrong (assuming
that a sentence is on average ten words long). More sophisticated automatic POS
tagger take the context into account in which a give word occurs to guess the correct
part of speech. State-of-the-art performance is 96–98% accuracy for English.

Current POS taggers often use Hidden Markov Models (HMMs; see Informat-
ics 1A) as the underlying technology. The POS tagging problem can be decomposed
as follows: The sequence of words to be tagged is corresponds to the output sequence
generated by the HMM. The tags to be assigned corresponds to the sequence of

§ II.2] Data Acquisition and Annotation 49

states that generates the output sequence. Then the problem of POS tagging reduces
to finding the most probable state sequence for a given output sequence.

Example II.13: Here is an example of what an automatic part of speech tagger
does. As an input it would take a sequence of words such as:

(2) Our enemies are innovative and resourceful, and so are we. They never stop
thinking about new ways to harm our country and our people, and neither
do we.

The output would look like this (we are simply separating the POS tag from the word
by a slash to save space, instead of using XML notation):

(3) Our/PRP$ enemies/NNS are/VBP innovative/JJ and/CC resourceful/JJ ,/,
and/CC so/RB are/VB we/PRP ./. They/PRP never/RB stop/VB think-
ing/VBG about/IN new/JJ ways/NNS to/TO harm/VB our/PRP$ coun-
try/NN and/CC our/PRP$ people/NN, and/CC neither/DT do/VB we/PRP
./.

4
Part of speech annotation is useful for a wide range of tasks; for example lexicog-

raphers find POS tags useful when they compile lists of words (and their frequencies)
for dictionaries, or when they monitor the development of new words that constantly
enter the language.

POS information refers to the word level (each word in the sentence is assigned a
part of speech). Other types of annotation, however, refer to the sentence level. The
best example for this is syntactic annotation , which means that information about syntactic annotation
the structure of sentences is added to a corpus. Knowing the syntactic structure
of a sentence is important as it is a prerequisite for computing its meaning, i.e.,
to figure out how does what to whom. The syntax of a sentence indicates which
parts of a sentence belong together. For example, a verb and its objects are grouped
together in a verb phrase (VP), and a noun and the words that belong to it (adjectives,
determiners) are group together in a noun phrase (NP). A preposition and the NP
that belongs to it form a prepositional phrase (PP). Verb phrases, noun phrases, and
prepositional phrase can then combine into a sentence (S). The syntax of a sentence
is typically represented as a tree that indicates how words are grouped into phrase.

Example II.14: Figure II.8 contains an example of a syntactically annotated sen-
tence. This sentence is taken from the Penn Treebank (Marcus et al., 1993), a stan-
dard syntactically annotated corpus for English. A fragment of the XML representa-
tion of such a syntactic tree is given in Figure II.9. 4

Again, syntactic annotation is a task that can be automated. Current syntactic an-
notation algorithms achieve an accuracy of around 90% for English (where accuracy

50 Semi-structured Data [CHAPTER II

NP

PRP

They
VB

saw

VP

NP

NP PP

DT NN IN NP

DT NN

S

the president of

the company

Figure II.8: Example for a syntactically annotated sentence from the Penn Treebank

<s>
<np><w PRP>They</np>
<vp><w VB>saw

<np>
<np><w DT>the <w NN>president</np>
<pp><w NN>of

<np><w DT>the <w NN>company</np>
</pp>

</np>
</vp>

</s>

Figure II.9: XML version of the Penn Treebank tree

is computed on a phrase-by-phrase basis).
Most corpora are based on edited text or scripted speech, i.e., on material that is

fairly free of noise an errors. However, most real-world communication takes place
in the form of unscripted dialog. Attempts have been made to collect corpora of
unscripted dialog, so as to make this type of data amenable to scientific study. A
prominent example of such a corpus is the MapTask Corpus , developed at the Hu-MapTask Corpus
man Communication Research Centre at the University of Edinburgh (Anderson
et al., 1991). This corpus consists of speech recorded from pairs of participants who
collaborate in solving a route finding task. Each of the participants has a map which
the other one cannot see. The instruction giver (IG) has a route marked on map. The
instruction follower (IF) has no route on his or her map. The task is to reproduce
IG’s route on the IF’s map.

The resulting speech is of course much less clean that newspaper text. It contains
hesitations, false starts, slips of the tongue, and cross talk (when the two speakers

§ II.3] Querying Corpora 51

Figure II.10: Sample map from the MapTask corpus (instruction giver)

talk at the same time). The designers of the MapTask corpus have developed an
annotation scheme that takes all of this into account, and annotates dialog structure : dialog structure
speaker turns are marked up, the purpose of a given turn is labeled, etc.

Example II.15: Figures II.10 and II.11 depict a set of maps from the MapTask
corpus; Figure II.12 contains a sample dialog. 4

II.3 Querying Corpora

In the previous section, we have seen how corpus data can be acquired systemat-
ically, pre-processed, and annotated with information such as parts of speech. The
next step is to do something useful with the marked-up data, i.e., to use it to find lin-
guistically interesting information, or to extract statistics that are useful for building
NLP applications. This is what the present section is about: we will deal with concor-

52 Semi-structured Data [CHAPTER II

Figure II.11: Sample map from the MapTask corpus (instruction follower)

dances, regular expression queries, and discuss methods for discovering collocations,
i.e., sequences of words that tend to occur together.

II.3.1 Concordances

In Section II.1.2, we have already seen that it is sometimes useful to extract all
occurrences of a given word from a corpus. If we do this, we typically want to see
the word in its original context. An occurrence of a word within its context is called
a concordance . Concordance programs allow us to specify a word, a set of words, aconcordance
part-of-speech tag, or some other keyword, and then return a concordance for each
corpus occurrence that matches the keyword. (Section II.3.2 will deal in more detail
with constructing concordances.)

Example II.16: Suppose a preliminary corpus study suggests that the usage of

§ II.3] Querying Corpora 53

1. Neil:
Right Start from the sandy shore.
2. Chris:
Okay.
3. Neil:
moving down ... straight down.
4. Chris:
How far?
5. Neil:
Down as far as the bottom of the well.
7. Neil:
{fg Ah}. Right, {fg|eh}. Move down, {fg|eh}, vertically
down about a quarter of the way down the page. Move to the
right in ... Do you have local residents?
8. Chris:
I do.

Figure II.12: Sample dialog from the MapTask corpus

 's cellar . Scrooge then <remembered> to have heard that ghost
, for your own sake , you <remember> what has passed between
e-quarters more , when he <remembered> , on a sudden , that the
corroborated everything , <remembered> everything , enjoyed eve
urned from them , that he <remembered> the Ghost , and became c
ht be pleasant to them to <remember> upon Christmas Day , who
its festivities ; and had <remembered> those he cared for at a
wn that they delighted to <remember> him . It was a great sur
ke ceased to vibrate , he <remembered> the prediction of old Ja
as present myself , and I <remember> to have felt quite uncom

Figure II.13: Concordance for the word remember

the word remember is worth looking into further, e.g., to check whether it is used
transitively (with an object) as well as intransitively (without an object). A good
starting point for such a study is a concordance for remember. The typical way of
displaying such a concordance is as in Figure II.13. 4

In this example, the keyword (the word remember) appears roughly in the middle
of each line, and each line has some predetermined number of characters, i.e., there
is a fixed left and right context in which the word is displayed. This way of displaying
a concordance is called a keyword in context index, or KWIC index. keyword in context

A KWIC index is not the only way of displaying a concordance. You could
display the sentence or paragraph the keyword occurs in, rather than having a fixed
context to the left and right of the keyword. But in what follows we will concentrate

54 Semi-structured Data [CHAPTER II

on KWIC indexes.

II.3.2 Regular Expressions

Specialized software is typically used to construct word concordances such the one
in Figure II.13. In this course, we will learn how to use one such program, the Corpus
Query Processor (CQP), which is part of the IMS Corpus Workbench, developed atCorpus Query Processor
IMS, the Institute for Natural Language Processing at Stuttgart University.2 At the
heart of CQP is a query engine that makes it possible to search corpora efficiently
by specifying regular expressions over words, parts of speech, or other markup in the
corpus.

Before we deal with CQP in detail, let us recap some basic facts about regular
expressions (introduced in Informatics 1A). Here, we will adopt a slightly differentregular expressions
perspective by talking about a string matching a regular expression under certain
conditions. A regular expression can be defined as consisting of the following ele-
ments:

• Symbol : A symbol a in a regular expression R matches the string a .Symbol

• Sequence : A sequence R1R2 of two regular expressions matches the concatena-Sequence
tion of the string matched by R1 and the string matched by R2.

• Choice : A choice R1|R2 of two regular expressions matches the string matchedChoice
by R1 or the string matched by R2.

• Repeat : A regular expression R∗ matches a sequence of 0 or more instances ofRepeat
R. The star in R∗ is also referred to as the Kleene star .Kleene star

CQP’s query language makes it possible to directly specify regular expressions in
search expressions. An example for a very simple CQP query is:3

(4) [word="remember"];

Here, word is a positional attribute , i.e., something that is marked up at a cer-positional attribute
tain position in the corpus (in this case it is simply the word form). The value of
the attribute is matched against the right hand side of the query (here, the string
remember). Thus, the query in (4) will return all the instances in the corpus that
match the word remember. The right hand side of the query can contain a regular
expression. For example, the choice operator | can be used to match multiple word
forms:

2For more information on CQP and the Corpus Workbench, see http://www.ims.
uni-stuttgart.de/projekte/CorpusWorkbench/ .

3The query [word="remember"]; can be abbreviated to just "remember"; .

http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/
http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/

§ II.3] Querying Corpora 55

(5) [word="remember|remembers|remembered|remembering"];

The query in (5) therefore returns all forms of the word remember, resulting in an
output like the one in Figure II.13. The Kleene star can also be used in CQP regular
expressions, as in the following example:

(6) [word="blaa*"];

(6) will match the words bla , blaa , blaaa , etc. (Note that the * binds
only the previous letter, not the whole expression.) CQP also offers a number of
additional regular expression operators, which do not add to the expressivity of the
query language, but make it easier to formulate succinct queries. These include the
dot operator, which matches any character, as in:

(7) [word="s.ng"];

This expression matches sing , sang , sung , but also szng and s6ng . The list
operator [...] matches all characters in the square brackets. We could therefore
formulate the previous query more accurately as:

(8) [word="s[iau]ng"];

Abbreviations for subsets of the alphabet are possible, as in [a-d] or [1-6] . The
Kleene star is not the only repetition operator that CQP supports. While * matches
zero or more repetitions of an string, + matches one or more repetitions, and ?

matches zero or one instance of a string.
Finally, round brackets (and) can be used to group characters together,

and a subsequent operator will then apply to the whole string enclosed by the round
brackets. For example:

(9) [word="[Rr]emember(s|ed|ing)?"];

The query in (9) matches the words remember , remembers , remembered ,
and remembering , and the corresponding capitalized forms.

The positional attribute word is available in every corpus (this is simply the word
form); but many corpora contain more annotation, such as the part of speech attribute
pos . Assuming we have a corpus that is POS tagged with the Penn Treebank tag set, part of speech attribute
we can formulate queries like:

(10) [pos="NN.*"];

This returns all nouns in the corpus: the expression NN.* matches the tag NN for
regular nouns and the tags NNP and NNPS for singular and plural proper nouns, see
Table II.6. Several regular expressions can be combined in a single query using the

56 Semi-structured Data [CHAPTER II

now , notwithstanding the <hot tea> they had given me before
.' ' Shall I put a little <more tea> in the pot afore I go ,
o moisten a box-full with <cold tea> , stir it up on a piece
tween eating , drinking , <hot tea> , devilled grill , muffi
e , handed round a little <stronger tea> . The harp was there ; t
e so repentant over their <early tea> , at home , that by eigh
rs. Sparsit took a little <more tea> ; and , as she bent her
s illness ! Dry toast and <warm tea> offered him every night
of robing , after which , <strong tea> and brandy were administ
rsty . You may give him a <little tea> , ma'am , and some dry t

Figure II.14: Concordance for the query [pos="JJ.*"] [word="tea"];

Boolean operators & (and), | (or), and ! (not). For example, we can formulate a
query that returns all word forms that start with like and are not tagged as a noun:

(11) [(word="like.*") & (pos=!"NN.*")];

Finally, queries can refer to sequences of word, simply by concatenating several
[...] expressions:

(12) [pos="JJ.*"] [word="tea"];

This query will match all instances of the word tea that are preceded by an adjective
(coded as JJ in the Penn Treebank tag set). A sample output for this query is listed
in Figure II.14.

II.3.3 Collocations

Collocations are sequences of words that occur together. For example the nounCollocations
amok is almost always preceded by the verb run, hence run amok form a strong collo-
cation in English. Another example for a collocation is strong tea; the noun tea does
not appear to go well with adjectives such as powerful, even though powerful tea and
strong tea have a very similar meaning. Hence strong tea is also classified as a collo-
cation in English. Finally, phrasal verbs are collocations, too. For example, the verb
make can occur with particles such as up, off, out, but not with the particle in. The
verb take, on the other hand, can occur with in as in He didn’t take in the news.

Given a large corpus, we can try to automatically identify collocations by search-
ing the corpus for suitable occurrences. CQP can be used for this, for example the
query in (12) should return the adjectival collocations of tea. The output of this
query in Figure II.14 shows that strong tea is indeed a word combination that occurs
in the corpus, while powerful tea fails to occur. However, there are other occurrences
such asmore tea which do not seem to form collocations. Intuitively, in order to make
a word combination a collocation it has to occur frequently. For example, we would
expect strong tea to have a higher frequency than powerful tea in a corpus.

§ II.3] Querying Corpora 57

strong , 52 powerful , 5
and 31 effect 3
enough 16 sight 3
. 16 enough 3
in 15 mind 3
man 14 for 3
emphasis 11 and 3
desire 10 with 3
upon 10 enchanter 2
interest 8 displeasure 2
a 8 motives 2
as 8 impulse 2
inclination 7 struggle 2
tide 7 grasp 2
beer 7 friends 2

Table II.7: Frequency distributions for all bigrams with strong and powerful as the
first word

CQP can be used to compute frequency distributions. For instance, we can use
it to obtain the bigram frequencies for all words that occur with strong and powerful. bigram frequencies
To do this, we first define two named queries, Q1 and Q2 (note that [] matches
any word):
(13) Q1 = [word="strong"] [];

Q2 = [word="powerful"] [];

Then we use the named queries together with CQP’s group command to obtain
frequency distributions:

(14) group Q1 matchend word by match word;

group Q2 matchend word by match word;

These queries tell CQP to group together the values of the word attribute at
the position matchend (the last word in the match, here: []) and sort the
result by word at position match , i.e., the beginning of the match (here:
[word="strong"] or [word="powerful"]). The resulting bigram distri-
bution is listed in Table II.7. We have only included the 15 most frequent bigrams in
this table, in keeping with our hypothesis that a word combination has to be highly
frequent in order to qualify as a collocation. Valid collocations should therefore be at
the top of this table.

Unfortunately, neither strong tea nor powerful tea are frequent enough to make it
into Table II.7 (this is an instance of sparse data, see Section II.1.3). However, we

58 Semi-structured Data [CHAPTER II

managed to discover some interesting potential collocations for strong, such as strong
desire, strong inclination, and strong beer (the later is similar to strong tea). Also for
powerful, we find some potential collocations, such as powerful effect, powerful motives,
and powerful struggle.

II.3.4 Statistical Tests

In the previous section, we tried to use bigram frequencies to identify collocations
involving the adjectives strong and powerful, and the result was displayed in Table II.7.
However, there are a lots of bigrams in this table that are definitely not collocations,
such as strong and, strong enough, strong upon, powerful for, and powerful and (in
addition to bigrams involving commas and periods, which are also irrelevant). This
means that pure bigram frequency is not sufficient to identify collocations; we need
some way of filtering out “noise”, i.e., bigrams that are highly frequent, but do not
qualify as collocations.

The reason for this problem is that some words like for or and or punctuation
marks like comma or period are highly frequent in their own right. And this means
that there is a high likelihood that they occur with our target words strong and pow-
erful, resulting in highly frequent bigrams that show up in Table II.7. We therefore
need a way of distinguishing collocations from words that co-occur a lot just by
chance (such as powerful for). The answer to this problem is hypothesis testing usinghypothesis testing
statistical techniques. We formulate a null hypothesis H0 that there is no associationnull hypothesis
between the two words are interested in. Then we can compute the probability p

that we see the two words together in a corpus, given that H0 is true. If p is suffi-
ciently low, then we can reject H0, and assume that the two words in question really
form a valid collocation. Typically, the null hypothesis can be rejected if p < .05

(sometimes the stricter criterion of p < .01 is used). This threshold is refereed to as
the significance level of a statistical test.significance level

Modern statistics makes available a large number of tests, many of which are ap-
plicable to the problem of discovering collocations. In what follows, we will only deal
with one test that is particularly simple and has many applications beyond collocation
discovery: the χ2 (chi-square) test . This test compares n probability distributions,χ2 (chi-square) test
each with m values, and yields a significant results if the distributions are reliably
different. The input for the χ2 test is typically displayed as an n × m contingency
table .contingency table

Example II.17: For example, assume that we want to compare the performance
of boys and girls in a given exam, which can yield the marks A, B, C, and D. We
can therefore tabulate the data in a 4 × 2 contingency table, with the marks on the
x-axis and the distribution (boys or girls) on the y-axis. A fictitious example data set
is displayed in Table II.8. 4

§ II.3] Querying Corpora 59

Oij A B C D
∑

i Oij

Boys 3 23 43 10 79
Girls 6 34 31 4 75∑

j Oij 9 57 74 14 154

Table II.8: Contingency table for fictitious exam data

Eij A B C D
Boys 4.62 29.24 37.96 7.18
Girls 4.38 27.76 36.04 6.82

Table II.9: Expected frequencies for the exam data

The χ2 statistic is now computed by comparing the observed frequencies in the observed frequencies
contingency table with the expected frequencies . The expected frequencies are the expected frequencies
frequencies that would be expected if the H0 hypothesis was true, i.e., if there was
no difference in the distributions tabulated in the contingency table. Mathematically,
this can be formulated as follows:

χ2 =
∑
i,j

(Oij − Eij)
2

Eij

(II.1)

Here, i ranges over the rows of the contingency table, and j ranges over its columns.
Oij is the observed frequency for cell (i, j), while Eij is the expected frequency for
cell (i, j). The expected frequencies can be calculated as follows:

Eij =

∑
j Oij

∑
i Oij

N
(II.2)

Here, N is the overall number of observations. The sums
∑

j Oij and
∑

i Oij are
also referred to as the marginals of the contingency table. marginals

Example II.18: We use formula (II.2) to calculate the expected frequencies for the
data in Table II.8. The result is tabulated in Table II.9. Using formula (II.1), we can
then calculate the χ2 value for this contingency table:

χ2 =
∑

i=1...4,j=1...2

(Oij−Eij)
2

Eij

= (3−4.62)2

4.62
+ (23−29.24)2

29.24
+ (43−37.96)2

37.96
+ (10−7.18)2

7.18
+

(6−4.38)2

4.38
+ (34−27.76)2

27.76
+ (31−36.04)2

36.04
+ (4−6.82)2

6.82

= .57 + 1.33 + .67 + 1.11 + .60 + 1.40 + .70 + 1.17

= 7.55

4

60 Semi-structured Data [CHAPTER II

Oij w1 ¬w1

w2 f(w1, w2) f(¬w1, w2)

¬w2 f(w1,¬w2) f(¬w1,¬w2)

Table II.10: Schematic contingency table for testing if a bigram occurs significantly
more than chance

The χ2 value computed using formula (II.1) then needs to be compared against
critical values , i.e., values that χ2 needs to exceed in order for the test to be significant. critical values
These critical values depend on the degrees of freedom of the test. Intuitively, thedegrees of freedom
degrees of freedom correspond to the number of dimensions along which a test can
vary. For the χ2 test, the degrees of freedom (df) are computed as follows:

df = (n − 1)(m − 1) (II.3)

Here, n is the number of rows in the contingency table, and m is the number of
columns.

Example II.19: For our example in Tables II.8 and II.9, the degrees of freedom
are: df = (n − 1)(m − 1) = 3 × 1 = 3. The corresponding critical value for
a significance level of p < .05 is 7.82. The value χ2(3) = 7.55 for our example
data is below the critical value, which means that we can conclude that the exam
performance of boys and girls is not significantly different.4 4

The χ2 test can also be applied for collocation filtering , i.e., the task of identifyingcollocation filtering
bigrams that are valid collocations. For each bigram w1w2 we want to investigate,
we compile a contingency table that tabulates the number of times w1 and w2 occur
together, and compares it with the number of timesw1 andw2 occur separately. This
yields the contingency table in Table II.10, where f(w1, w2) refers to the frequency of
w1 and w2 occurring together, f(w1,¬w2) refers to the frequency of w1 occurring
with a word other than w2, etc. Applying the χ2 test to this contingency table tests
the hypothesis that w1 and w2 occur together more often than chance: the observed
frequencies in the χ2 test are the frequencies with which the words occur in the
corpus, and the expected frequencies are the frequencies which we would expect the
words to occur if their distribution was random.

Example II.20: Let us return to the collocations of strong in Table II.7. As an
example take the two bigrams strong desire and strong upon, both of which occur 10
times in this corpus. We need to look up the number of occurrences for strong, desire,
and upon (which is easily done using CQP), and we need to know the overall number

4In practice, the χ2 is not suitable for contingency tables that contain frequencies smaller than 5,
as it tends to overestimate the importance of rare events. Alternative tests can be applied that do not
suffer from this shortcoming, such as the G2 test.

§ II.4] Information Retrieval 61

Oij strong ¬strong
desire 10 214
¬desire 655 3407085

χ2(1) = 46684423

Oij strong ¬upon
upon 10 7107
¬upon 655 3407085

χ2(1) = 6235

Table II.11: Contingency tables for the bigrams strong desire and strong upon

of words in the corpus. Then we can compute contingency tables for these words,
which are displayed in Table II.11

Using formulas (II.1) and (II.2), we can now compute the χ2 values for these two
bigrams, which are also tabulated in Table II.11. The critical value for df = 1 is
3.84, and both χ2 values far exceed this. However, the valid collocation strong desire
has a much higher χ2 value than the invalid collocation strong upon, which indicates
that the χ2 can successfully applied as a filter: We simply remove all bigrams from
Table II.7 whose χ2 value falls below a certain threshold. 4

II.4 Information Retrieval

In the previous section, we discussed how linguistic information can be extracted
from corpus data, using corpus query engines that support regular expression search
over words. We also saw examples for the use of simple statical tests to filter the
information gleaned from corpora.

In the present section, we will broaden the scope of our study of corpora as semi-
structured data. We will move from techniques for the retrieval of words or sentences
to techniques that make it possible to retrieve whole documents from a document
collection, based on a query posed by a user. This technology is called information
retrieval (IR) and plays an increasingly important role in informatics. information retrieval

II.4.1 Information Retrieval Systems

We already briefly discussed information retrieval in Section II.1.4 as one of the
applications of techniques for processing semi-structured data. Let us now define the
IR task in a bit more detail.

The classical problem in IR is the ad hoc retrieval problem : Given a query, find ad hoc retrieval problem
the documents that are relevant to this query. Typically, the following assumptions
are made in this scenario:

• We are searching a large, static document collection.

• The user accessing the document collection has an information need, which
he or she formulates in terms of a query (typically in the form of keywords).

• The task is to find all and only the documents that relevant to the user’s query.

62 Semi-structured Data [CHAPTER II

Examples of widely used IR systems are web search engines, of which Google is
a prominent example (see Figure II.6). In the case of search engines, the document
collection to be searched is a large collection of web pages. The information need that
the user has it typically to find pages on a particular topic, and he or she formulates a
keyword-based query to express this information need. The search engine’s task is to
return a ranked list of web pages that match the user’s queries.

Other examples of IR systems include bibliographic information systems such asexamples of IR systems
the ones used by researchers to find scientific articles on a given topic; typically these
systems search a collection of documents that list the titles, authors, and abstracts of
scientific papers. Journalists use similar systems to retrieve newspaper articles from
large, electronic newspaper archives.

In what follows, we will explore a number core techniques that will allow us to
build a simple IR system. We will address the following scientific problems that are
addressed by IR technology:

• Query type : How should we formulate the queries to an IR system?Query type

• Indexing : What is the best way of representing the documents searched by theIndexing
system?

• Retrieval model : How does the system find the best-matching document? HowRetrieval model
do we make sure that this happens efficiently?

• Output presentation : What is the best way of presented the results of the search?Output presentation
The results could be output as an unsorted list, a ranked list, or clusters of
documents.

• Evaluation : How do we measure the performance of the system, i.e., how doEvaluation
we find out if the system does what it is supposed to do?

II.4.2 Indexing

The purpose of an IR system is to search a document collection, and it has to have
a representation of the documents in the collection that facilitates retrieval. This task
is called indexing . Typically, indexing means finding terms , i.e., words or phrasesindexing

terms that describe the documents well and thus make it possible to match the terms against
a query to achieve successful retrieval. There are several ways of generating the terms
for a document. Manual indexing means that human annotators manually choose aManual indexing
set of terms for a given document. Manual indexing typically employs large vocabu-
laries, containing several thousand of index terms. Examples of such vocabularies are
the Library of Congress Subject Headings, which are often used to index the holdings
of scientific document collections, such as the books in a university library. Another

§ II.4] Information Retrieval 63

Medical Subject Headings (MeSH)
Eye Diseases C11
Asthenopia C11.93
Conjunctival Diseases C11.187
Conjunctival Neoplasms C11.187.169
Conjunctivitis C11.187.183
Conjunctivitis, Allergic C11.187.183.200
Conjunctivitis, Bacterial C11.187.183.220
Conjunctivitis, Inclusion C11.187.183.220.250
Ophthalmia Neonatorum C11.187.183.220.538
Trachoma C11.187.183.220.889

Conjunctivitis, Viral C11.187.183.240
Conjunctivitis, Acute Hemorrhagic C11.187.183.240.216

Keratoconjunctivitis C11.187.183.394

Table II.12: Example for a vocabulary for manual indexing: Extract from the Medical
Subject Headings

example is the classification of subfields of computer science developed by the As-
sociation for Computing Machinery (ACM), which is often used to index research
articles appearing in scientific journals.

The advantages of manual indexing is that it works well for closed document
collections (such as the books in a library), and it generally achieves high precision,
because the manual index has been carefully selected to contain the correct terms.
The disadvantages are that annotators need to be trained to achieve consistency across
documents, and that many document collections are dynamic, which means that the
indexing schemes changes constantly (examples for dynamic document collections
are the web or a collection of newspaper articles). It is unlikely that a fixed vocabulary
of terms is suitable for these dynamic IR tasks.

Example II.21: Table II.12 contains an example for a vocabulary used for manual
indexing, viz., an extract from the Medial Subject Headings, which are used to in-
dex medical literature. Table II.13 contains another example, the ACM Computing
Classification System used to index literature in computer science and related fields.
Note that both vocabularies are organized in a hierarchical way (they contain classes
and subclasses), i.e., they are taxonomies . 4 taxonomies

Many IR systems perform automatic indexing , i.e., they automatically extract automatic indexing
relevant words or phrases from the documents in the collection, instead of relying
on manual annotation. Typically, automatic indexing also includes term weighting:
certain terms are considered more important than others, for example based on their
frequency. Another important technique is term manipulation , which includes pro- term manipulation

64 Semi-structured Data [CHAPTER II

Computing Classification System (1998)
B Hardware
B.3 Memory structures
B.3.0 General
B.3.1 Semiconductor Memories (NEW) (was B.7.1)

Dynamic memory (DRAM) (NEW)
Read-only memory (ROM) (NEW)
Static memory (SRAM) (NEW)

B.3.2 Design Styles (was D.4.2)
Associative memories
Cache memories
Interleaved memories
Mass storage (e.g., magnetic, optical, RAID)
Primary memory
Sequential-access memory

Table II.13: Example for a vocabulary for manual indexing: Extract from the ACM
Computing Classification System

cesses that map certain words or phrases on the same term.
Automatic indexing does not use a predefined, artificially created set of index

terms. Instead, natural language is used as the indexing language, under the assump-
tion that the words in the document provide sufficient information about its content
to allow successful retrieval. This has the advantage that the vocabulary of the index
can change dynamically as the document collections change.

An automatic index is typically implemented as an inverted index . This is ainverted index
data structure that contains all the words that occur in the document collection, and
for each word it specifies which document the word occurs in. Given an inverted
index and a query, its straightforward to retrieve the documents in the collection that
contain the words in the query: we simply go through the inverted index and return
the document listed there for a given query word. Searching the inverted index for a
keyword is much faster than searching through the whole document collection, hence
using the index speeds up the retrieval process considerably.

An inverted index can also be enriched with position information : for each word,position information
the index also lists which document it occurs in, and where in the document it can
be found. This makes it possible for the IR system to specifically return part of a
document in response to a query, or to highlight the query terms in the document.

Example II.22: Figure II.15 illustrates the how an inverted index works. We start
with a collection of documents (in this case, we only have six document with one
sentence each). Then we list all the words in the documents, and for each word

§ II.4] Information Retrieval 65

Figure II.15: Creation of an inverted index

we index the document it occurs in the form of a document number. Figure II.16
illustrates the same process for an inverted index with position information. 4

Often, index creation does not really include all the words in the documents.
Typically stop words are excluded, i.e., words that are important for the structure of stop words
a sentence, but carry very little semantic information. Examples include determiners
like a, the, prepositions like of, with, at, and pronouns like he, her, our. These words
are highly frequent and tend to occur in all documents, so they add very little to the
retrieval process.

II.4.3 Vector Space Models

A very simple IR system could just use an inverted index, i.e., for a given query it
could simply return all the documents that contain all the words (or any of the words)
in the query. For a large document collection, and a sufficiently general query, this
typically means that the system returns a large number of relevant documents, and
the user has to trawl through thousands of hits. Modern IR system therefore provide a
document ranking by relevance. A number of ranking methods have been developed, document ranking
but in this section we will focus on one particularly intuitive approach, the vector

66 Semi-structured Data [CHAPTER II

Figure II.16: Creation of an inverted index with position information

space model of document ranking.vector space model
The core idea is that documents are treated as points in high-dimensional vector

space, based on the words they contain. Queries are also represented in vector space.
Then the IR system can select the documents with the highest document-query sim-
ilarity and present these to the user (instead of just returning an unordered set of
documents).

Example II.23: This can be illustrated schematically using Figure II.17. Assume
the query is car insurance. Then we have a simple two dimensional vector space,
with the terms car and insurance as the two dimensions (the x-axis and the y-axis).insurance
The vector q represents the query, and the vectors d1, d2, and d3 represent three
documents that contain the two terms. Document d2 is closest to q in vector space,
so this would be the document returned by the system as the most relevant one. 4

The document vectors for the vector space model can be created by tabulating
the frequencies of the terms in a given document. This is an extension of the idea
behind the inverted index: now we are using a table as our data structure, in which
the columns represent the terms, and the rows represent the documents. In each cell
of the matrix we specify how often a given term occurs in the document in question.
The query is represented in the same way. The vectors required for comparing the

§ II.4] Information Retrieval 67

d1

q

d2

d3

car

insurance0
0

Figure II.17: Schematic illustration of the vector space model of IR

Term1 Term2 Term3 ... Termn

Doc1 14 6 1 ... 0
Doc2 0 1 3 ... 1
Doc3 0 1 0 ... 2
...

DocN 4 7 0 ... 5

Q 0 1 0 ... 1

Table II.14: Example for the creation of the vectors for the vector space model

similarity of a query and the documents in the collection can be extracted straight-
forwardly from this data structure: they are simply the rows in the table.

Example II.24: Table II.14 is an example of a table containing the vectors for
a document collection, with the documents Doc1 . . .DocN as rows and the terms
Term1 . . .TermN as columns. The query Q is tabulated in the last row. 4

More formally, each document in the document collection is represented as a
vector of n values, the term frequencies:

~x = (x1, x2, . . . , xn) (II.4)

Now we need a way of measuring the similarity between the document vector ~x and
the query vector. A number of vector similarity measures have been proposed for this vector similarity mea-

surespurpose, but here we will focus on the cosine , which measures the angle between two
cosinevectors ~x and ~y. This similarity measure has been applied successfully for a range of

IR tasks.

68 Semi-structured Data [CHAPTER II

The cosine between two vectors ~x and ~y is defined as:

cos(~x,~y) =
~x · ~y
|~x||~y|

=

∑n
i=1 xiyi√∑n

i=1 x2
√∑n

i=1 y2
(II.5)

As mentioned in Section II.4.2, there are a number of other things that an IR system
can do to increase retrieval performance. Term weighting means that we give moreTerm weighting
weight to certain terms. The vector space model in the way it has been introduced
here implicitly performs term weighting: the vectors are constructed based on term
frequencies, which means that high frequency terms are more important than low
frequency terms. More complicated term weighting schemes are often applied to im-
prove retrieval performance, as explained in Manning and Schütze (1999, Ch. 15).
These weighting schemes use term frequency, document frequency, collection fre-
quency, or a combination of these frequencies. Typically, we also need normalization
to factor out the effect document length on the vectors, as of course longer docu-normalization
ments are more likely to contain relevant terms, just because their are longer. For
term frequency, this can be achieved by dividing the term frequency for a given doc-
ument by the number of terms in that document. This corresponds to using relative
frequencies instead of absolute frequencies (see Section II.1.2).

Another important technique is term manipulation , i.e., processes that modifyterm manipulation
the terms that end up in the vectors. Using a stop word list is one way of eliminating
irrelevant terms that would distort retrieval. Another important process is stemming ,stemming
which removes the endings from the words, e.g., the words Constitution, constitution,
constitutions would all be mapped on the term constitution .

II.4.4 Evaluation

Evaluation is the process of systematically measuring how well a given systemEvaluation
(e.g., an IR system) performs by comparing its output against pre-defined criteria.
Formal evaluation makes it possible to demonstrate that a system successfully achieves
the task it is designed for. In particular, we need evaluation if we want to compare
the performance of several systems or algorithms on the same task. In what follows,
we will discuss several basic evaluation techniques using information retrieval as an
example. However, these techniques are general, and applicable in many areas of
informatics.

Two fundamental ways of measuring the performance of an IR system is in terms
of precision and recall . Intuitively, precision tells us how many of the documents thatprecision and recall
the systems retrieves are correct (i.e., relevant to the query), while recall tells us how
many of the relevant documents in the document collection the system managed
to find. More precisely, we can define precision and recall based on the following
quantities:

• True positives (TP): number of relevant documents that the system retrieved.True positives

§ II.4] Information Retrieval 69

Relevant Non-relevant
Retrieved true positives false positives
Not retrieved false negatives true negatives

Table II.15: Schematic confusion matrix

• False positives (FP): number of non-relevant document that the system re- False positives
trieved.

• True negatives (TN): number of non-relevant documents that the system did True negatives
not retrieve.

• False negatives (FN): number of relevant documents that the system did not False negatives
retrieve.

The quantities are typically tabulated in the form of a confusion matrix , schemat- confusion matrix
ically depicted in Table II.15. We can now define precision as the number of relevant
documents retrieved over the total number of documents retrieved:

P =
TP

TP + FP
(II.6)

And recall is the number of relevant documents retrieved over the total number
of relevant documents:

R =
TP

TP + FN
(II.7)

Example II.25: Assume we have a document collection with 130 documents in
total, of which 28 documents are relevant for a given query. We now want to compare
two IR systems. System 1 retrieves 25 documents in total, of which 16 are relevant.
This means that the system achieves 16 true positives and 25−16 = 9 false positives.
The number of false negatives is 28 − 16 = 12. We therefore get:

P1 =
TP1

TP1 + FP1

=
16

16 + 9
= .64 R1 =

TP1

TP1 + FN 1

=
16

16 + 12
= .57

System 2 retrieves only 15 documents, of which 12 are relevant. Hence the sys-
tems achieves 12 true positives and 3 false positives, and 16 false negatives:

P2 =
TP2

TP2 + FP2

=
12

12 + 3
= .80 R2 =

TP2

TP2 + FN 2

=
12

12 + 16
= .43

70 Semi-structured Data [CHAPTER II

1
precision

recall
0

10

Figure II.18: Schematic precision-recall curve

This shows that system 2 beats system 1 in terms of precision, but system 1
outperforms system 2 in terms of recall. 4

In order for a system to perform well, it has to achieve both high precision and
recall: if both figures are 100%, then this means that the system has retrieved all
and only relevant documents. It does not make sense to only look at one of the two
figures. If a system simply returns all documents in the document collection it will
achieve perfect recall (as it has returned all relevant documents), but precision will
be low (as a lot of irrelevant documents have been returned, too). Conversely, if a
system only returns one document, and this document is relevant, and it achieves
perfect precision, but recall will be low (as most of the relevant documents were not
retrieved).

More generally, a system is faced with a precision-recall tradeoff : It can try toprecision-recall tradeoff
optimize precision at the cost of recall, or it can try to increase recall at the cost
of precision. Which of the two quantities is more important often depends on the
particular application the system is designed for. In a formal evaluation of a system,
different version the system are often compared with respect to this tradeoff, which
can then be graphed in a precision-recall curve as in Figure II.18.

It is often useful for system evaluation to have a single measure that combines
both precision and recall. A commonly used measure that achieves this is the F-score
, which is defined as follows:F-score

Fα =
1

α 1
P

+ (1 − α) 1
R

(II.8)

The parameter α is a weighting factor: with a high α, recall is more important,
with a low α, precision is more important. It is very common, however, to treat the
two as equally important, i.e., to use α = .5, in which case F-score is simply the

§ II.4] Information Retrieval 71

harmonic mean of P and R:

F.5 =
2PR

P + R
(II.9)

In Section II.4.3, we introduced the vector space model as a way of ranking the
output of an IR system by comparing a document and a query in terms of their dis-
tance in a vector space over terms. An IR system that outputs a ranking of documents
is significantly more useful than on that simply returns all document that it considers
relevant. However, the evaluation measures we have introduced so far do not take
the ranking of the results into account, they apply to the whole set of results that the
system retrieves.

A way of addressing this problem is to compute precision at a cutoff . For example, precision at a cutoff
we can compute precision for the 5 or 10 most highly ranked documents. This figure
is referred to as precision at 5 and precision at 10 . This figure captures the fact that a precision at 5

precision at 10good system not only returns a lot of relevant documents, but also ranks them highly
(here: among the top five or ten documents).

This approach can be generalized by computing uninterpolated average precision , uninterpolated average
precisionwhich is the average of all precisions in a list of n document: we compute precision

at 1, precision at 2, etc., to precision at n, and then take the average. Two systems
which both return the same number of relevant documents among the top n can
still be distinguished by this measure: the system that ranks the relevant documents
higher in the top n will have a higher uninterpolated average precision. (Interpolated
average precision also exists, see (Manning and Schütze, 1999, Ch. 15).)

Example II.26: Table II.16 contains an example for ranking evaluations. We
compare three rankings returned by three different IR systems. A tick indicates that
a document is relevant, and a cross indicates that it is not relevant. With precision at
10, there is no difference between the systems, as they all return 5 relevant documents
out of 10. With precision at 5, however, system 3 performs better than system 2,
and system 1 performs even better than system 3, as they rank more of the relevant
documents in the top 5. Uninterpolated average precision is also listed; this measure
takes the complete ranking for positions 1 to 10 into account and therefore provides
the most differentiated evaluation measure. 4

72 Semi-structured Data [CHAPTER II

Evaluation Ranking 1 Ranking 2 Ranking 3
d1:

√
d10: × d6: ×

d2:
√

d9: × d1:
√

d3:
√

d8: × d2:
√

d4:
√

d7: × d10: ×
d5:

√
d6: × d9: ×

d6: × d1:
√

d3:
√

d7: × d2:
√

d5:
√

d8: × d3:
√

d4:
√

d9: × d4:
√

d7: ×
d10: × d5:

√
d8: ×

Precision at 5 1 0 .40
Precision at 10 .50 .50 .50
Uninterpol. avg. prec. 1 .35 .57

Table II.16: Example for the evaluation of document rankings produced by an IR
system

Bibliography

Anderson, A., Bader, M., Bard, E., Boyle, E., Doherty, G. M., Garrod, S., Isard, S.,
Kowtko, J., McAllister, J., Miller, J., Sotillo, C., Thompson, H. S., and Weinert,
R. (1991). The HCRC map task corpus. Language and Speech, 34:351–366.

Astrahan, Morton M., Blasgen, Mike W., Chamberlin, Donald D., Gray, Jim, III,
W. Frank King, Lindsay, Bruce G., Lorie, Raymond A., Mehl, James W., Price,
Thomas G., Putzolu, Gianfranco R., Schkolnick, Mario, Selinger, Patricia G.,
Slutz, Donald R., Strong, H. Raymond, Tiberio, Paolo, Traiger, Irving L., Wade,
Bradford W., and Yost, Robert A. (1979). System R: A Relational Data Base Man-
agement System. IEEE Computer, 12(5):42–48.

Boyce, Raymond F. and Chamberlin, Donald D. (1973). Using a structured english
query language as a data definition facility. IBM Research Report, RJ1318.

Burnard, Lou (1995). Users Guide for the British National Corpus. British National
Corpus Consortium, Oxford University Computing Service.

Chen, Peter Pin-Shan (1976). The Entity-Relationship Model-Toward a Unified
View of Data. ACM Transactions on Database Systems, 1(1):9–36.

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks.
Commun. ACM, 13(6):377–387.

Francis, Nelson, Kucera, Henry, and Mackie, Andrew (1982). Frequency Analysis of
English Usage: Lexicon and Grammar. Houghton Mifflin, Boston.

Manning, Christopher D. and Schütze, Hinrich (1999). Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge, MA.

Marcus, Mitchell P., Santorini, Beatrice, and Marcinkiewicz, Mary Ann (1993).
Building a large annotated corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

McEnery, Tony and Wilson, Andrew (2001). Corpus Linguistics: An Introduction.
Edinburgh University Press, Edinburgh, 2 edition.

73

74 BIBLIOGRAPHY [CHAPTER II

Ramakrishnan, Raghu and Gehrke, Johannes (2003). Database Management Systems.
McGraw-Hill.

Stonebraker, Michael, Wong, Eugene, Kreps, Peter, and Held, Gerald (1976). The
Design and Implementation of INGRES. ACM Trans. Database Syst., 1(3):189–
222.

	Structured Data
	Overview
	The Entity/Relational Model
	Entities
	Relationships
	Additional Features

	Relational Databases
	The Relational Model
	Data Definition in sql
	Mapping E/R Diagrams to Relational Schemata

	Querying and Manipulation
	Data Manipulation Through Relational Algebra
	Tuple Relational Calculus
	Examples

	Semi-structured Data and xml

	Semi-structured Data
	Basic Concepts
	Corpus Data
	Questions Corpora Can Answer
	Obtaining Corpus Counts
	Building Applications Using Corpora

	Data Acquisition and Annotation
	Balancing and Sampling
	Pre-processing
	Markup Languages
	Corpus Annotation

	Querying Corpora
	Concordances
	Regular Expressions
	Collocations
	Statistical Tests

	Information Retrieval
	Information Retrieval Systems
	Indexing
	Vector Space Models
	Evaluation

