
Informatics 1 - Computation & Logic:
Tutorial 7

Computation: Non-Deterministic FSMs and
Regular Expressions

Week 9: 13 - 17 November 2017

Please attempt the entire worksheet in advance of the tutorial,
and bring all work with you. Tutorials cannot function properly
unless you study the material in advance. Attendance at tutorials
is obligatory; please let the ITO know if you cannot attend.

You may work with others, indeed you should do so; but you
must develop your own understanding; you can’t phone a friend
during the exam. If you do not master the coursework you are
unlikely to pass the exams.

You may find it useful to refer to the FSM Workbench question
set which accompanies this tutorial at
homepages.inf.ed.ac.uk/s1020995/tutorial6.

Use the workbench to check your working, but ultimately you
should aim to be able to answer simple questions of this type
working with just pencil and paper.

This tutorial exercise sheet was written by Matthew Hepburn and Dagmara
Niklasiewicz, with additions from Michael Fourman. Send comments to
Michael.Fourman@ed.ac.uk

1

http://homepages.inf.ed.ac.uk/s1020995/tutorial6
http://homepages.inf.ed.ac.uk/s1020995/tutorial6


In Lecture 14 we introduced this example of a DFA encoded in Haskell:

NFA are easy to define and easy to combine. 
DFA are easy to implement

r

searching for cucumber
u mm bc u c e rebuu cc

. .

s0 [] = True

s0 ('0':xs) = s0 xs

s0 ('1':xs) = s1 xs

s0 ('2':xs) = s2 xs

s1 [] = False

s1 ('0':xs) = s3 xs

s1 ('1':xs) = s0 xs

s1 ('2':xs) = s1 xs

s2 [] = False

s2 ('0':xs) = s2 xs

s2 ('1':xs) = s3 xs

s2 ('2':xs) = s0 xs

s3 [] = False

s3 ('0':xs) = s1 xs

s3 ('1':xs) = s2 xs

s3 ('2':xs) = s3 xs

The code consists of four mutually recursive functions, one for each state of
the machine. To check whether a string, input, is accepted by the machine
we evaluate s0 input (because S0 is the starting state of our DFA), which
returns the Boolean answer, True or False.
Check that you understand how this code relates to the DFA. How would
you modify the code if the accepting state were S3? How could you modify
the code to return the number of the final state of the trace generated by
any input string?

1. Consider the finite state machine in the diagram below.

a,c

a

b

b

b

c

a,b
,c

a,b,c

a,c

S1

S2

S3

S4

S5

Input Is Accepted?
〈 〉
b
aa
ba

abaab
acaca
aaab
bbbcb
cacba

(a) For each input sequence in the table above, record whether it is
accepted by the FSM.

(b) Is the FSM deterministic? Justify your answer.

(c) Implement a Haskell function to check your answers (by implment-
ing a suitable DFA).

2



3



2. This NFA over the alphabet {a} uses an ε transition.

a ε

a

S1 S2 S3

(a) Describe the language accepted by this machine in words.

(b) Describe the language accepted by this machine using a regular
expression.

(c) Design a deterministic machine that accepts the same language as
this machine.

3. ε-transitions provide a simple way of combining FSMs. The machine
below has been composed from two machines A and B, which had initial
states A1 and B1.

ε

a

b

a

a

ε
b

b

a

a

a

b

S

A1 A2 A3

B1

B2

B3

B4

B

A

(a) Considering machines A and B separately, give a regular expres-
sion which describes the language they accept.

(b) Considering the whole machine, give a regular expression which
describes the language the machine accepts.

4



(c) LA and LB are the languages accepted by machines A and B. Give
an expression relating LA and LB to L, where L is the set of input
accepted by the whole machine.

(d) Construct and test a Haskell implementation of an equivalent
DFA.

4. Consider the regular expression ab(a|b)∗

(a) Describe in words the language that the expression matches. In-
clude two examples of strings that are matched.

(b) Design a finite state machine that accepts that language.
(c) Building on your answer to (b), design a finite state machine that

accepts ab(a|b)∗bb∗(aa)∗.

(d) Construct and test a Haskell implementation of an equivalent
DFA.

5. Consider this NFA over the alphabet {a, b, c}.

c
c

c

ε

a

ε

b c

c

B1

A1 A2 A3

B2 B3

C1 C2

(a) Describe, both in words and with a regular expression, the lan-
guage accepted by this machine. Hint: think about the sequences
that end in A3 and B3.

(b) Design a DFA that accepts the same language.
(c) Are there any NFAs that cannot be converted into an equivalent

DFA?

5



6. Consider this DFA over the alphabet {0, 1, 2}. It should be familiar.

(a) Describe, in words, the language accepted by this machine. Hint:
Your description in words should refer to ternary numbers.

(b) Replace each transition labelled 0 by a transition labelled ε, be-
tween the same two states. The resulting automaton is not a DFA.
(Why not?)

i. Construct an equivalent DFA.
ii. Describe, both in words and with a regular expression, the

language accepted by this machine.

(c) Next, replace each transition (of the original machine) labelled 1
by a transition labelled ε, between the same two states.

i. Again, construct an equivalent DFA, and, ii, describe the lan-
guage it accepts.

(d) Repeat the exercise replacing each transition (of the original ma-
chine) labelled 2 by a transition labelled ε, between the same two
states.

i. Construct an equivalent DFA,
ii. describe the language it accepts.

6



(e) BONUS QUESTION: Give a regular expression that describes the
language accepted by the original machine. Test your answer using
the grep utility.
This bonus question goes somewhat beyond the call of duty. Feel
free not to attempt it. That said, by the end of week 7 you should
have all the tools required to complete it. If you do choose to try
it, I suggest you use cut and paste in some suitable editor to make,
and keep track of the algebraic substitutions that are required.

7. Use the FSM workbench to construct a machine that accepts ternary
strings with an even number of 1s and an even number of 2s (and any
number of 0s) that represent a number that is not a multiple of four.

Hint: start by constructing a machine that accepts ternary strings S
that satisfy at least one of the following three conditions:

(a) S includes an odd number of 1s,

(b) S includes an odd number of 2s,

(c) S represents a multiple of 4.

You are asked to build a machine that accepts strings that satisy none
of these conditions.

7



Tutorial Activity
String matching algorithms try to find a place where one or several strings
(also called patterns) are found within a larger string or text.
String matching algorithms play a vital role in a host of applications ranging,
for example, from the detection of plagiarism, to the analysis of protein and
DNA sequences in Computational Biology.
In computational biology DNA – the stuff of which the double helixes that
carry genetic information are made – consists of two chains of bases.1 There
are four types of base: cytosine (C), guanine (G), adenine (A) or thymine
(T). The two chains are matched together A–T and C–G, so one chain de-
termines the other. For example, if one chain is AATCAG the other must be
TTAGTC.
In real-life problems biologists may search for patterns with thousands of
letters in genomes with billions of base-pairs.
For this exercise you should consider strings on the alphabet with four sym-
bols AGCT.

1. (a) Draw an NFA that will accept any string that includes the pattern
CACAT. Name each state with the string it is looking for – a
string that has a trace from that state to an accepting state. So,
the starting state will have the name CACAT and the accepting
state has the name ε.

(b) List the reachable states of the NFA, as constructed by the subset
procedure.

2. (a) Draw an NFA that will accept any string that includes a close
match to the pattern CACAT, where a close match is either ex-
actly this string, or a string CACATof the same length that differs
from the given pattern at at most one letter. Hint: some states
will be looking for an exact match, and some for a close match.

1Biology is infinitely complex. This is a simplified account for the purposes of this
exercise.

8



3. If time permits, derive a Haskell program inplementing the DFA for
the first of these tasks. Each state of the DFA corresponds to a set of
states of the NFA – each state of the DFA is looking for any one of the
strings corresponding to the NFA states it includes. If we fail to find
the first letter of the shortest string we are looking for, we can fall back
to look for the next shortest string.

9


