
Informatics 1 - Computation & Logic:
Tutorial 4

Satisfiability and Resolution

Week 6: 23-27 October 2017

Please attempt the entire worksheet in advance of the tutorial, and bring
all work with you. Tutorials cannot function properly unless you study
the material in advance. Attendance at tutorials is obligatory; please let
the ITO know if you cannot attend.

You may work with others, indeed you should do so; but you must develop
your own understanding; you can’t phone a friend during the exam. If
you do not master the coursework you are unlikely to pass the exams.

Introduction
Resolution is a procedure used to search for a state that satisfies a given set of
constraints, ⌃. The idea is to choose one variable, X, the resolution variable and to
replace the clauses that mention that variable by a set of new clauses, to give a new,
simpler, set of constraints ⌃X such that:

• X does not occur in ⌃X

• we can extend any valuation V that satisfies ⌃X

to a valuation that satisfies ⌃.
To resolve on X, we factor out the literals X and ¬X to write

⌃ = (X _ �) ^ (¬X _�) ^ ⌦

where �,�,⌦ are sets of constraints that do not mention X.
Clearly1 if we find a state V that satisfies � ^ ⌦ then we can extend V with the

value X = > to produce a state that satisfies ⌃. Similarly, if we find a state that
satisfies � ^ ⌦ we can extend V with the value X = ? to satisfy ⌃.

We define ⌃X = (� _�) ^ ⌦. This definition means that, if we find a state that
satisfies ⌃X it satisfies either � or �, or both, and also satisfies ⌦. So, as pointed out
above, we can extend it to a state that satisfies ⌃.

If there is no state satisfying ⌃X , then ⌃ is not satisfiable.

1If this is not clear, go back to look again at last week’s tutorial activity.
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Example 1
Here is an example, where we begin by resolution on the variable A.
⌃ = (A _ B _ ¬D) ^ (¬A _D _ E) ^ (¬A _ ¬C _ E) ^ (B _ C _ E) ^ (¬B _D _ ¬E)

= A _ (B _ ¬D) � = B _ ¬D
^¬A _ ((D _ E) ^ (¬C _ E)) � = (D _ E) ^ (¬C _ E)

^ (B _ C _ E) ^ (¬B _D _ ¬E) ⌦ = (B _ C _ E) ^ (¬B _D _ ¬E)

⌃A = (� _�) ^ ⌦

= ((B _ ¬D) _ ((D _ E) ^ (¬C _ E))) ^ (B _ C _ E) ^ (¬B _D _ ¬E)

= (B _ ¬D _D _ E) ^ (B _ ¬D _ ¬C _ E) ^ (B _ C _ E) ^ (¬B _D _ ¬E)

= (B _ ¬D _ ¬C _ E) ^ (B _ C _ E) ^ (¬B _D _ ¬E)

Observe that each pair of clauses, where one includes A and the other includes ¬A
(we call this a resolution pair), gives rise to a term in �^� – sometimes this term will
be trivial. We have reduced the problem of satisfying ⌃ to the problem of solving a
simpler set of constraints, ⌃A. We will continue, to resolve on the remaining variables
until the procedure stops. However, to avoid continually rewriting long equations, we
will first simplify our notation.

Clausal Form
Since _ is associative, (A_B)_C = A_ (B _C), commutative, (A_B) = (B _A),
and idempotent, (A_A) = A, we can represent each non-trivial clause by a finite set
of literals. Since ^ is also associative, commutative and idempotent, we represent a
CNF as a finite set of clauses — a set of sets of literals — a so-called clausal form.
Here are ⌃ and ⌃A, from Example 1, represented as clausal forms:

⌃ =
�
{A,B,¬D}, {¬A,D,E}, {¬A,¬C,E}, {B,C,E}, {¬B,D,¬E}

 

⌃A =
�
{B,¬D,¬C,E}, {B,C,E}, {¬B,D,¬E}

 

States or Valuations
A state or valuation is an assignment of >,? values to propositional letters (atoms).
We can represent a state the conjunction of any set of literals in which X and ¬X
do not both occur. A state V (a set of literals, viewed as a conjunction) satisfies a
clausal form iff each clause (a set of literals, viewed as a disjunction) in the clausal
form includes at least one of the literals in V.

V |= ⌃ iff for all C 2 ⌃ . C \ V 6= ; (1)
To avoid confusion with a non-trivial clause, which represents the disjunction of such
a set of literals, we will normally write out each state as an explicit conjunction.

We remark on two special cases of 1. The empty clause represents ?, the empty
disjunction (of no literals). If {} 2 ⌃ =

�
{}, . . .

 
, then ⌃ can never be satisfied,

since {} \ V = ;. The empty clausal form, {}, with no clauses, represents >. It is
vacuously satisfied by every state since there is no C 2 {} .
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Resolution
When using resolution to solve a set of constraints, we use clausal form to set out our
working. Here is how we would set out our resolution on A:

A
A{A,B,¬D} {B,¬D,D,E}
A{¬A,D,E} {B,¬D,¬C,E}
A{¬A,¬C,E}
{B,C,E}

{¬B,D,¬E}
Each resolution pair gives rise to a resolvent

{A,B,¬D} {¬A,D,E}
{B,¬D,D,E} (A)

{A,B,¬D} {¬A,¬C,E}
{B,¬D,¬C,E} (A)

We have two resolution pairs so we have two resolvents, but one is trivial; it includes
both D and ¬D — we strike it out. The clauses used to form the resolution pairs
are annotated, A�, to show that they have been used for resolution on A —this
information wil be useful later. The remaining clauses represent ⌃A.We continue...

A B
A{A,B,¬D} {B,¬D,D,E} {C,E,D,¬E}
A{¬A,D,E} B{B,¬D,¬C,E} {¬D,¬C,E,D,¬E}
A{¬A,¬C,E}
B{B,C,E}

B{¬B,D,¬E}
Both resolvents are trivial. There are no remaining non-trivial constraints, so we can
pick any values for the remaining atoms, C,D,E.

For example, suppose we choose to make them all false: ¬C ^ ¬D ^ ¬E. We
first choose a value of B to make all of the clauses labelled B� true —we know that
at least one value will work, but we have to check which one. To satisfy the clause
{B,C,E}, when C and E are false, we have to make B true. Since this is forced, we
know that the other B�labelled clauses will be satisfied —but it is good to check in
case there are mistakes in our working. In a state such that B^¬C^¬D^¬E, every
clause that includes at least one of the conjoined literals is satisfied. So it suffices to
observe that ¬E 2 {¬B,D,¬E} and B 2 {B,¬D,¬C,E}.

Now, given that B ^ ¬C ^ ¬D ^ ¬E, we are in a position to choose a value for
A —we know there is one— that will satisfy all the clauses labelled A�. This time,
our choice is forced by {¬A,D,E}; we have to make A false, so our final valuation is
given by ¬A ^ B ^ ¬C ^ ¬D ^ ¬E. Again, you should double-check this result, by
checking that the two remaining clauses are indeed satisfied by this valuation.

If the constraints are satisfiable, resolution will stop when there are no more res-
olution pairs. Either there will be no remaining clauses, or every remaining literal
will be pure —meaning that its negation does not appear— in which case we must
make at least one literal in each remaining clause true, to produce a satisfying valu-
ation (and we can just make them all true). If the constraints are not satisfiable the
procedure will eventually produce the empty clause, at which point we can stop.
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Homework

1. To derive a satisfying state for Example 1, we chose to make C,D,E all false
and then found values for B and A to satisfy the original constraints. Find
values for B and A to extend the remaining 7 valuations of CDE so that the
origiinal constraints are satisfied.
CDE B A

??>
?>?
?>>
>??
>?>
>>?
>>>

2. In applying resolution, we can choose which variable to resolve, taking the
variables in any order. Redo the example, resolving first on E, and then on the
remaining variables in reverse-alphabetical order.

{A,B,¬D}

{¬A,D,E}

{¬A,¬C,E}

{B,C,E}

{¬B,D,¬E}
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3. Our next example includes 6 clauses:
�
{A,B} , {A,¬B,¬C} , {¬A,D} , {¬B,C,D} , {¬B,¬D} , {¬A,B,¬D}

 

(a) Following the same procedure as before, resolve on ABCD in turn.

(b) Was the empty clause found?

(c) Is the clausal form satisfiable?
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4. This question concerns the resolution of the claim that the following set of
expressions is consistent —that is to say, that there is at least one valuation
that makes all of these expressions true.

{P ! (Q _R), Q ! ¬S, S �R, (R?Q : P ), (Q ^R) ! T}

To apply resolution to this problem you will first have to convert each expression
to clausal form.

(a) Express each expression in clausal form.

i. P ! (Q _R)

ii. Q ! ¬S
iii. S �R

iv. (R?Q : P )

v. (Q ^R) ! T

(b) Use resolution to determine whether the conjunction of the expressions is
consistent.
You should start from the union of the clausal forms given in your answers
to 4a.

(c) Is the original claim correct?

(d) If it is, produce a satisfying valuation.
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For the final question, we return to entailment, first mentioned in tutorial 2. There
we gave the following definition.

Given expressions ', ✓, , we say ' and ✓ entail  (for which we write
', ✓ |=  ) iff every state that satisfies both ' and ✓ also satisfies  . When
working with an entailment ', ✓ |=  , we refer to ', ✓ as its premises and
 as its conclusion.

Here we will generalise this slightly to allow a finite set of expressions on either side
of the ’gate’, |= . We say that � |= � iff every state that satisfies every expression in
� satisfies at least one expression in �.

We will normally omit the set-brackets {}, and other set-notation, when writing
entilments. For example, if ', , ✓ are expressions, we write

� |= ' for � |= {'}
�, ✓ |= ', for � [ {✓} |= {', }

Now consider what this definition of |= means in some special cases.

5. What does the definition mean in the following examples?

(a) The case where � is empty.
What does it mean to say that � |= ;
(which we usually write simply as � |= )?

(b) The case where � is empty.
What does it mean to say that ; |= �
(which we usually write simply as |= �)?

(c) The case in which � is a set of literals.
Is it true that A,¬B,C |= (A� B) $ C ?
In general, if � is a set of literals how can we interpret � |= ' ?

(d) What if both � and � are sets of literals?
In this case, what does it mean to say that � |= � ?
Hint: think about valuations and clauses.

(e) What does it mean to say that � 6|= ' ?
Can you give a set of constraints that is satisfiable iff � 6|= ' ?

... see over ...
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Tutorial Activity

1. As usual, you should start by working as a group to identify and resolve any
problems with the homework

2. The main activity is designed to highlight one of the shortcomings of resolu-
tion. You will see that resolution makes heavy weather of a relatively simple
combinatorial problem.

Perth
Adelaide

Melbourne

Hobart

Darwin

Sydney

Brisbane

Consider this map of Australian States. It is coloured, with four colours, but
two adjacent states (states that share a common border) have the same colour.
We want a better colouring.
You have probably heard of the four-colour theorem — any planar map can be
coloured with four colours so that no two adjacent states have the same colour.
However, here we have not coloured the sea, and to extend a four-colouring of
the states to include the sea we would need a fifth colour.
So, there must be a 3-colouring of the states. Of course, it is easy to find one,
but we want to use this problem to learn something about resolution.

... see over ....
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We first throw away some irrelevant detail by converting this to a problem
about graphs. An undirected graph is just a symmetric binary relation E on a
set N of nodes, we call this an adjacency relation. If E(a, b) we say there is an
edge ha, bi, between a and b. We can draw a diagram to help us visualise the
adjacency relation.
For example, a triangle has three nodes and three edges, a tetrahedron has four
nodes and six edges, and a cube has eight nodes and twelve edges.

(a) Draw these three graphs.
Can you draw them so that no edges cross each other?
(If you can, they are planar graphs.)
Can you find an example of a non-planar graph?

(b) To present our example as a graph, let the nodes be the seven states, and
let X and Y be adjacent iff they share a common border. Draw the graph.
Use the initial letters of the state capitals as names for the seven nodes,
M,S,H,D, P,A,B.
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(c) How many edges are there in your Australia graph?

We can now replace the map colouring problem by the graph colouring problem.
Can we colour each node so that no pair of adjacent nodes have the same colour
— or equivalently, so that any two adjacent nodes have different colours?

(d) As a first exercise, suppose we have three colours, C = {r, a, g} (red,
amber, green). Without thinking about logic (for a brief moment) can you
count the number of three-colourings of your graph?
Hint: If you arbitrarily fix the colouring of two adjacent nodes, can you
extend your colouring to the entire graph?

(e) How many distinct colourings are there of this graph?

Now return to logic. Consider a propositional language with 21 atoms; for
each Node X and each colour y we introduce an atom Xy whose intended
interpretation is that the state whose capital is X can be coloured with colour
y. For example, a solution might make Hr,Ha,Hg all true, since it doesn’t
matter what colour we give to the isolated island of Tasmania.

... see over ....
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(f) First construct a set of constraints, ⌃, in CNF, such that for any valuation
V satisfying these constraints,
• for each X 2 N. there is some y 2 C .

such that X may be coloured with y.
• for each edge (X, Y ) 2 E. for each y 2 C .

it is not the case that both X and Y can be coloured with y.
⌃ should include one clause for each node (we will call these the node-
clauses) and three (one for each colour) for each edge of the graph(we will
call these the edge-clauses). Describe these clauses, but don’t bother to
write them all out in full.

Look back at the section on resolution, in the introduction to this tutorial. Each
resolution pair gives rise to a resolvent. Check that any state satistfying the two
paired clauses will also satisfy the resolvent. Rather than embark immediately
on a full resolution, we can use this fact to produce clauses that will be satisfied
by any state satisfying the constraints.

(g) For example, arbitrarily fix the colours for two adjacent nodes by adding
two unit clauses Pr ^ Aa to your constraints. Use resolution to find con-
straints satisfied by any colouring that extends this choice.
Hint: first use resolution to determine the colour of a third node, by re-
solving the constraints given below. Then explain how resolution on the
full set of constraints would generate enough information to lead to a full
colouring.

Dr Pr Da Aa

Pr

Aa

Dr,Da,Dg

¬Pr,¬Dr

¬Aa,¬Da
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(h) Before attempting resolution on these constraints to solve the general sat-
isfaction problem it is useful to extimate the magnitude of the task.
For each node clause, how many edge clauses can it be paired with to make
a resolution pair? Can you estimate how many different clauses we might
produce by resolution from ⌃?

(i) Suppose we have a 3-colouring of the Australia graph that makes Brisbane
green (for example). Can you deduce that any other nodes will have the
same colour?

(j) Express one such deduction as an entailment, ',⌃ |= ✓, where ' and ✓ are
atoms of our language.
Which constraints from ⌃ are needed to derive this entailment?

(k) Compare your results, and discuss whether/how fixing the two colours in
part (2g) affects the process of resolution.

This tutorial exercise sheet was written by Dave Cochran and Michael Fourman, draw-
ing on material from an earlier tutorials produced by Paolo Besana, Thomas French,
and Areti Manataki. Send comments to Michael.Fourman@ed.ac.uk
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