
Informatics 1 - Computation & Logic:
Tutorial 6

Computation: Introduction to Finite State
Machines

Week 8: 6 – 10 November 2017

Please attempt the entire worksheet in advance of the tutorial,
and bring with you all work, including (if a computer is involved)
printouts of code and test results. Tutorials cannot function prop-
erly unless you do the work in advance.

You may work with others, but you must understand the work;
you can’t phone a friend during the exam.

Assessment is formative, meaning that marks from coursework do
not contribute to the final mark. But coursework is not optional.
If you do not do the coursework you are unlikely to pass the
exams.

Attendance at tutorials is obligatory; please let your tutor know
if you cannot attend.

1

A finite state machine (FSM), also called a finite state automaton (FSA)
is an abstract model of computation that can be used to design sequential
logic circuits and computer programs. For example, FSMs can represent the
behaviour of devices such as vending machines, elevators or traffic lights.
They may take as input, for example characters from an alphabet, numbers
or more abstract symbols, e.g. coins or button presses.

Finite state machines are often represented as a graph. Circles represent
the states in which the machine can be. There is a finite number of states
and the machine can only be in one state at a time (this is called the current
state). A change from one state to another is called a transition. Possible
transitions are represented by arrows on the graph. If a transition is trig-
gered by particular input to the system, it is represented as an annotation
next to the arrow. The state in which the machine starts operation is called
the initial state and in this tutorial it is represented by pointing to it with an
arrowhead. One or more of the states can be marked as an accepting state.
This is a state which should be reached after processing an input sequence
that the machine is designed to recognize as ‘valid’, for example a state in
which an appropriate amount of money was inserted into a vending machine,
which should then dispense a drink. If an input sequence causes the machine
to end in an accepting state, we say that input sequence is accepted, else it
is rejected.

Initial Accepting

For more information you can refer to the Wikipedia article on FSMs, on
which this introduction was based.

You may find it useful to refer to the FSM Workbench question set which
accompanies this tutorial at
homepages.inf.ed.ac.uk/s1020995/tutorial5 (the URL is correct — this exer-
cise was last year’s tutorial 5.

The link will take you to FSM simulations corresponding to each question.
You can also use this site to build FSMs on your own and experiment with
various inputs. A brief reference card is given at the end of this document.

2

https://en.wikipedia.org/wiki/Finite-state_machine
http://homepages.inf.ed.ac.uk/s1020995/tutorial5
http://homepages.inf.ed.ac.uk/s1020995/tutorial5

1. Consider this finite state machine.

(a) The machine accepts the sequence ‘111’. Give two other sequences
that it will accept. 〈〉 (empty string), ‘111111’, ‘111111111’

(b) What do the sequences that this machine accepts have in common?
All accepted strings consist of n×‘1’, where n mod 3 = 0.

(c) When will this machine be in state c ?
The machine will be in state c when n mod 3 = 2.

2. Like decimal numbers, binary numbers can be sorted into odd and even
by looking at only the least significant digit. For example 12 = 1100 is
even, 9 = 1001 is odd.

(a) Design a finite state machine over the alphabet {0,1} which ac-
cepts only those sequences that form an odd binary number.

0

1

0

1

(b) For each input sequence in the table below, record whether the
sequence is accepted or rejected by your machine.

3

Input Is Accepted?
0 N
1 Y

0001 Y
1111 Y
001010 N
110101 Y
〈〉 N

(c) What changes would you make to your machine to make recognise
even numbers? Make the start state the only accepting state.

(d) What changes would you make to your machine to recognise the
same sets for binary numbers presented in reverse order, with the
least significant bit coming first?

Odd

4

Even

3. This finite state machine could be used as part of a vending machine.
It accepts any sequence of 20p coins that add up to 40p or more.

20p 20p

20p

0p 20p

≥40p

(a) How does this machine deal with input of more than 40p? After
40p has been reached, more money can be input but it will not
alter the recorded total

(b) Modify the machine to also allow 10p coins.

5

20p 20p

10p,20p

10p 10
p 10p

10
p,
20
p

20p

0p 20p ≥40p

10p 30p

4. The FSM below models the control logic of a chip & PIN card payment
terminal. It represents a single transaction, ending in an accepting state
if the transaction is successful.

Insert Card Correct PIN Take Card

Wrong PIN

Take Card

S1 S2 S3 S4

S5

(a) Note that the transaction will fail if the card is removed too early.
Modify the machine so that the transaction will also fail if the
wrong PIN is entered three times.

Insert Card Correct PIN Take Card

Take Card
W

ro
ng

 P
IN

Correct PIN

Wrong PIN

C
or

re
ct

 P
IN

Wrong PIN

S1 S2 S3 S4

S5

S6 S7 S8

6

(b) This machine only verifies the PIN. Modify it to represent the pro-
cess of checking with the bank for approval. The machine should
only accept if the transaction is approved. The modified machine
should take inputs ‘Transaction Approved’ and ‘Transaction Re-
jected’.

Insert Card Correct PIN

Take C
ard

W
ro

ng
 P

IN

C
orrect PIN

Wrong PIN

C
or

re
ct

 P
IN

Wrong PIN

Transaction Approved Take CardTransaction Rejected

S1 S2 S3 S4

S5

S6 S7 S8

S9

S10

It could be argued that there should be ‘Take Card’ transitions
to S5 from every state other than S1, S5, and S9. As shown, the
behaviour of the machine is undefined if the card is removed early.

7

5. Consider a hot drinks machine. The machine takes 20p and 50p coins.
It sells tea for 50p and coffee for 70p.

(a) Design a FSM that could be used to control this machine. After
a successful sale the FSM should be in an accepting state. The
machine only needs to model a single transaction.

50p

20
p

Tea

50p

20p

Tea

20p
50p

20p

20
p,5

0p

Tea

Coffee

0p 50p

20p T≥70p

40p 60p

C

The label on the transition from the 50p state to the ≥ 70p state
could also allow a 50p input.

(b) Consider your answer to part (a). How does your machine handle
over-payment? Would it be possible to design a FSM that gives
correct change? The machine ignores payment over 70p. No finite
state machine can give correct change for all possible inputs, as
this requires the machine to count arbitrarily high. However, by
adding more states it would be possible to give change up to some
fixed limit.

6. The designer of the this machine was attempting to create a system to
accept strings with matching opening and closing brackets.

8

(

)

(

)

{ }

{

}

S1 S2 S3

S4 S5

(a) Give a sequence of matching brackets that the machine does not
accept. ((())) or {{{}}} or {()}.

(b) What does each state of the machine represent? That is, for each
state what do the sequences that end in that state have in com-
mon?
These are hard to describe with regular expressions, as parenthe-
ses are special characters. In the next two bulleted paragraphs,
we use () { } as literals and use [] to group regular expressions

• S1 – We introduce two patterns of matched parentheses to
describe the two branches of the FSM.
• Let P = [([()]∗)]∗ be a pattern for strings containing only
(), and let Q be the corresponding pattern for strings using
{ }, that is, Q = [{[{ }]∗}]∗

S1 accepts the language L1 = (P |Q)∗.
S2 accepts L1 followed by and extra (, plus any number of ()
pairs.
S3 – accepts any string accepted by S2, plus an extra (.
S4 – is similar to S2. It accepts a string in L1 plus an extra {,
plus any number of { } pairs.
S5 – accepts any string accepted by S4, plus an extra {.

(c) Is it possible to design a finite state machine that will accept all
possible sequences of matching brackets? Justify your answer.
No – this requires counting the number of open brackets. To do
this for all possible inputs would require an infinite number of
states.

9

(d) For each state in the machine, there are input symbols which do
not correspond to any transition. What do you think the machine
should do if it received input that did not correspond to a tran-
sition? There are (at least) two conventions for ’missing inputs’.
When we are modelling systems such as a coffee machine, we of-
ten use the convention that a missing transition signifies that the
corresponding action that cannot happen.
When we consider NFA the definition of a trace means that we
interpret missing transitions differently. If we construct the cor-
responding DFA using the subset construction, then the missing
transition is replaced by a transition to the empty set, which cor-
responds to a ’black hole’ state, from which there is no escape.

The ambiguity of how to handle unexpected input arises as it
is often undesirable to draw transitions for all possible inputs to
each state, as this can make diagrams difficult to read. For ma-
chines modelling control systems, such as the vending machine
in question 5, the convention is for machines to remain in their
current state when they receive unexpected input. For string pro-
cessing applications, such as bracket matching, the convention is
to reject sequences that contain unexpected input by moving to a
black hole state.

10

7. This is a variation on Question 2.

(a) Design a finite state machine over the alphabet 0,1 which accepts
only those sequences that form a binary number divisible by 3.
For example your machine should accept 0, 000, 011, 11, 110, 1001,
and 1100, which represent 0, 0, 3, 3, 6, 9 and 12. Hint: design a
machine with three states s0, s1, s2, where the machine is in state
s2 whenever n mod 3 = 2, i.e.where n, the number represented by
the binary sequence seen, is 2 more than some multiple of 3.
If a binary string s represents the number n, then s1 represents
2n + 1, while s0 represents 2n. The three states keep track of
n mod 3.

Answer:
(b) What changes would you make to your machine to make recognise

numbers not divisible by 3?

Answer:
(c) What changes would you make to your machine to recognise the

numbers divisible by 3 for binary numbers presented in reverse
order, i.e. with the least significant bit coming first?
The surprising answer is that we don’t need to change anything.
The machine for recognising 0 mod 3 can run backwards as well as
forwards — if we reverse the direction of every arrow we get the
same machine. This means that if the machine accepts a given
binary string then it also accepts that string in reverse order.
So, we have discovered that a binary string represents a number
divisible by 3 iff its reverse represents a number divisible by 3!
We can see this algebraically.1 If n is even, then 2xn = 1 mod 3,
while if n is odd then 2xn = −1 mod 3. The value v is the sum

1Thanks to Andrew Ranicki for this argument.

11

of these contributions mod 3. Reversing a string of odd length
takes odd bits to oddd bits, and even to even. Reversing a string
of even length swaps odd and even bits, so changes the sign of each
contribution. In either case, if the sum is 0 mod 3 it is unchanged
by the reversal.
Understanding the operation of the machine on the reversed string
is more complex. Adding a zero at the start of a binary number
doesn’t change its value, v. However, the effect of adding a 1 to
a string of length n is to move from v to v + 2n. So if we add two
successive 1s then v mod 3 doesn’t change.
Using these observations, you can check that the machine is:

• in S0 when v = 0 mod 3

• in S1 when either n is even and v = −1 mod 3, or n is odd
and v = 1 mod 3;
• in S2 when either n is even and v = 1 mod 3, or n is odd

and v = −1 mod 3;

Tutorial Activity
1. Use the FSM workbench

http://homepages.inf.ed.ac.uk/s1020995/fsmworkbench/create.html
to build machines to recognise the following languages. For each ma-
chine give a set of test strings that you use to check your design.

• Binary numerals that represent numbers divisible by 5.
Save the svg as base2mod5.

• Binary numerals that represent numbers divisible by 7. Save the
svg as base2mod7.

• Create more examples, such as base4mod5, base3mod7, base6mod7,
...

2. Can you say anything special about base n mod n+ 1?

12

http://homepages.inf.ed.ac.uk/s1020995/fsmworkbench/create.html

Using the FSM Workbench
The workbench provides tools for creating, editing, and simulating finite state
machines. The diagram shows the function of each tool.

You can toggle each tool on/off by clicking it. When no tools are active
you can drag the states of your FSM to rearrange the layout.

Save as SVG0 1 Reset

0 0

1

01

1

1

0

S1 S3

S2

S4

0 0 0 0 1 Add State

Edit names & transitions

Toggle accepting

Add transition

Toggle initial

Delete states/transitions

Provide input to
the machine

Start new input
sequence

This tutorial exercise sheet was written by Matthew Hepburn and Dagmara
Niklasiewicz, with additions from Michael Fourman. Send comments to
Michael.Fourman@ed.ac.uk

13

