
Informatics 1 - Computation & Logic:
Tutorial 5 v:1.12 1st November 2017 16:36:40

Satisfiability and Resolution

Week 7: 30 October–3 November 2017

Please attempt the entire worksheet in advance of the tutorial, and bring
all work with you. Tutorials cannot function properly unless you study
the material in advance. Attendance at tutorials is obligatory; please let
the ITO know if you cannot attend.

You may work with others, indeed you should do so; but you must develop
your own understanding; you can’t phone a friend during the exam. If
you do not master the coursework you are unlikely to pass the exams.

We say that Γ |= ∆ iff every state that satisfies every expression in Γ satisfies at least
one expression in ∆. In particular, |= ∆ (the LHS is empty) iff

∨
∆ is a tautology,

and Σ |= (the RHS is empty) iff Σ is not satisfiable.
We represent a state as (the conjunction of) the set V of literals true in that state.

For any formula φ either V |= φ or V |= ¬φ — as V makes φ either true or false.

So, Γ |= ∆ iff for all states V.(
(for all ϕ ∈ Γ. V |= ϕ)⇒ (for some ψ ∈ ∆. V |= ψ)

)
Γ 6|= ∆ iff there is a counterexample V such that

(for all ϕ ∈ Γ. V |= ϕ) and, (for all ψ ∈ ∆. V |= ¬ψ)

Homework
1. Which of the following statements are true?

In each false case give a counterexample (specify values for Γ,∆ that make one
entailment valid, then give values for ϕ, ψ that show the other is invalid).

(a) Γ |= ∆, ϕ iff Γ,¬ϕ |= ∆ true
(b) Γ |= ∆,¬ϕ iff Γ, ϕ |= ∆ true
(c) Γ6 |= ∆, ϕ ∧ ψ iff Γ |= ∆, ϕ, ψ Γ = ∆ = ∅;ϕ = >;ψ = ⊥
(d) Γ |= ∆, ϕ ∨ ψ iff Γ |= ∆, ϕ, ψ true
(e) Γ, ϕ ∨ ψ 6 |= ∆ iff Γ, ϕ, ψ |= ∆ Γ = ∅; ∆ = {ψ};ϕ = >;ψ = ⊥
(f) Γ, ϕ ∧ ψ |= ∆ iff Γ, ϕ, ψ |= ∆ true

1

You should have found that 1(a) is true: Γ |= ∆, ϕ iff Γ,¬ϕ |= ∆ .
For example (in this example ∆ = ∅),

D → (A ∨B), E ∨ (C ? ¬A : B), (B ? E → D : C ∨ E) |= (D ∧ C)→ (B ∨ E)

iff
D → (A ∨B), E ∨ (C ? ¬A : B), (B ? E → D : C ∨ E),¬

(
(D ∧ C)→ (B ∨ E)

)
|=

In general, if we write ∆¬ for {¬ψ | ψ ∈ ∆}, Γ |= ∆ iff Γ,∆¬ |=
This means that, Γ |= ∆ iff Γ,∆¬ is inconsistent.

Resolution is a procedure used to search for a state that satisfies a given set of
constraints, Σ. If there is no state satisfying Σ — which means that Σ is inconsistent
— then resolution will produce the empty clause.

So, we can test whether Γ |= ∆ by converting Σ = Γ,∆¬ to CNF and
then using resolution. If resolution of Σ produces the empty clause then
the entailment is valid; otherwise a satisfying valuation for Σ provides a
counterexample to the entailment.

In the examples below there is only one conclusion — ∆ is a singleton.

2. Use resolution to determine whether the following entailment is valid.

A→ (B ∨ C),¬D → ¬(B ∧ C) |= A→ D

(a) First convert each assumption and the negation of each conclusion to
clausal form.
i. A→ (B ∨ C) {¬A,B,C}
ii. ¬D → ¬(B ∧ C) {¬B,¬C,D}
iii. ¬(A→ D) {A},{¬D}

(b) Check whether this set of constraints is consistent:

When our constraints include singleton clauses (also known as unit clauses),
then the literals they include must be true in any satisfying assignment.
We can simlify our clauses by making these literals true.
For example, here,{A} and {¬D} are unit clauses.

AD B
{¬A,B,C} {B,C}
{¬B,¬C,D}} {¬B,¬C} {C,¬C}

{A}
{¬D}

2

The constraints are consistent so the entailment is invalid.
To make the unit clauses true, we made A true and D false; this makes the con-
clusion of the entailment false To construct a counterexample, we can choose
any value for C, and make B = ¬C; it is easy to check that this makes the
assumptions true

3

3. Determine whether the following entailment is valid

(D → (A ∨B)), (E ∨ (C ? ¬A : D)), (B ? C → E : A→ C) |= (B → C)→ (D → E)

(a) First convert each assumption and the negation of each conclusion to
clausal form.

i. D → (A ∨B) {A,B,¬D}
ii. E ∨ (C ? ¬A : D) {¬A,¬C,E}, {D,C,E}
iii. (B ? C → E : A→ C) {¬B,¬C,E},{¬A,B,C}
iv. ¬

(
(B → C)→ (D → E)

)
{¬B,C}, {D}, {¬E}

(b) Check whether this set of constraints is consistent:
First, make unit literals true, >.

DE A B C
D{A,B,¬D} A{A,B}
E{¬A,¬C,E} A{¬A,¬C} B{B,¬C} C{¬C}
D{D,C,E}

E{¬B,¬C,E} B{¬B,¬C}
A{¬A,B,C} B{B,C} C{C} {}
B{¬B,C}

D{D}
E{¬E}

The constraints are inconsistent so the entailment is valid.

You should now be able to tackle many of the questions on past papers.

These can be found at https://www.inf.ed.ac.uk/teaching/exam_papers/

Here are some questions you should be able to answer:

Dec 2014 Q1, Q3

Dec 2015 Q1, Q3(a,b)

Aug 2016 Q1, Q3(a,b)

Dec 2016 Q1, Q2, Q4

4. Try these and bring any questions you may have to your tutorial,
or visit InfBase.

4

Entailment

Γ |= ∆ iff for all states V.(
(for all ϕ ∈ Γ. V |= ϕ)⇒ (for some ψ ∈ ∆. V |= ψ)

)
Γ 6|= ∆ iff there is a counterexample V such that

(for all ϕ ∈ Γ. V |= ϕ) and, (for all ψ ∈ ∆. V |= ¬ψ)

We will normally omit the set-brackets {}, and other set-notation, when writing
entailments. For example, if ϕ, ψ, θ are expressions, we write

Γ |= ϕ for Γ |= {ϕ}
Γ, θ |= ϕ, ψ for Γ ∪ {θ} |= {ϕ, ψ}

Now consider what this definition of |= means in some special cases.

• The case where ∆ is empty.
Γ |=
(Γ |= ∅) means that the conjunction

∧
Γ of all expressions in Γ is contradictory.

• The case where Γ is empty.
|= ∆
(∅ |= ∆) means that the disjunction

∨
∆ of all expressions in ∆ is a tautology.

• The case in which Γ is a non-contradictory set of literals.
A non-contradictory set of literals determines a truth valuation of the atoms it
mentions.
In this case, Γ |= ϕ means that the valuation determined by

∧
Γ makes ϕ true.

• If both Γ and ∆ are sets of literals, and Γ is non-contradictory,
we can view Γ as representing a valuation V and ∆ as representing a clause
Γ |= ∆ iff Γ ∩∆ is non-empty: (Γ ∩∆ 6= ∅), which means that V satisfies ∆.

5

Tutorial Activity
1. As usual, you should start by working as a group to identify and resolve any

problems with the homework.

2. Consider the simple Traffic Light, introduced in class, with a cycle of four states.
The four legal states of the light are captured by the four states of the variables
R,A representing the red and amber lights. The Green light is on only in the
state represented by ¬R ∧ ¬A.
In this question, you will extend the model by adding one more state variable
C, representing the presence of a car – there is normally a sensor in the road
that indicates a car is passing or waiting at the light, C could be the output of
this sensor. The new system will have eight states – each each legal state of the
lights, with a car present C or absent ¬C.

(a) Assume that the lights cycle through the proper sequence, and that cars
always obey the traffic regulations, draw a diagram of the legal state tran-
sitions. Give a logical description of the legal transitions.

(b) Can you remove some transitions to describe a system in which the lights
will not change to green unless there is a car waiting? Give a logical
description of the transitions you allow.

(c) How might you model an intersection with two pairs of lights? What
should be the states of this system? What conditions on the states and
transitions do we need to specify a safe and efficient system?

3. Modify the PIN-checking section of the ATM to allow more than one attempt
to enter the PIN. Your machine should retain the card after three wrong PIN
entries.

current

next

R

A

G

R0

A0

G0

5

A

D

B

C

current

next

A B C D
B C D A

ATM

£

ok?

yes

choose a/c
balan

ce
withdraw

insert card

wrong PIN

PIN ok

amount notake money

return card

return card

4

withdraw

This tutorial exercise sheet was written by Dave Cochran and Michael Fourman, draw-
ing on material from an earlier tutorials produced by Paolo Besana, Thomas French,
and Areti Manataki. Send comments to Michael.Fourman@ed.ac.uk

6

